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S U M M A R Y
We introduce a scheme for probabilistic hypocentre inversion with Stein variational inference.
Our approach uses a differentiable forward model in the form of a physics informed neural
network, which we train to solve the Eikonal equation. This allows for rapid approximation
of the posterior by iteratively optimizing a collection of particles against a kernelized Stein
discrepancy. We show that the method is well-equipped to handle highly multimodal posterior
distributions, which are common in hypocentral inverse problems. A suite of experiments is
performed to examine the influence of the various hyperparameters. Once trained, the method
is valid for any seismic network geometry within the study area without the need to build
traveltime tables. We show that the computational demands scale efficiently with the number
of differential times, making it ideal for large-N sensing technologies like Distributed Acoustic
Sensing. The techniques outlined in this manuscript have considerable implications beyond
just ray tracing procedures, with the work flow applicable to other fields with computationally
expensive inversion procedures such as full waveform inversion.
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1 I N T RO D U C T I O N

Earthquake hypocentres represent the points in space and time at
which earthquakes occur. They are a fundamental component of
many downstream analyses in seismology, from seismic tomogra-
phy to earthquake source properties. They are also used for real-time
earthquake forecasting, such as during active sequences. Thus, the
ability to reliably estimate hypocentres and characterize their un-
certainty is of major importance in seismology.

Determining an earthquake hypocentre from traveltime observa-
tions of seismic waves is a classic inverse problem in geophysics.
The earliest methods performed linearized least-squares inversions,
as described in Geiger (1910). Flinn (1965) built on this work to
include uncertainty into the theory through the adoption of con-
fidence regions. Subsequent decades saw various adaptations of
these methods to better account for uncertainty (Bolt 1960; Buland
1976; Jackson 1979; Uhrhammer 1980; Jordan & Sverdrup 1981;
Matsu’ura 1984). Tarantola & Valette (1982) proposed formulat-
ing the hypocentre inverse problem as one of Bayesian inference,
allowing for complete probabilistic descriptions of the hypocentral
parameters. The Bayesian treatment of this problem was expanded
upon significantly (Lomax et al. 2000; Lomax 2005) as new tech-
niques for statistical inference were developed, which allowed for
more robust likelihood distributions to be used.

Bayesian inference was pioneered by Jeffreys (1935), using Bayes
rule to compute the posterior probability of whether the difference

between two data sets is significant. Subsequent research in the geo-
physical community saw a wealth of understanding with an appli-
cation of these methods to a geophysical setting (e.g. Press 1968).
In recent years, Bayesian inference has seen increasing adoption
by the geophysics community for solving the numerous inverse
problems that exist (Duputel et al. 2015; Hightower et al. 2020;
Gama et al. 2021). One of the most popular classes of techniques is
Markov Chain Monte Carlo (MCMC) sampling (e.g. Gelman et al.
2013), in which a target distribution is approximated by a series
of samples drawn from it. Standard MCMC works well for low di-
mensional models with simple distributions, and has recently seen
substantial improvement on larger dimensional (∼1000 parameters)
models and more complex distributions (Hoffman & Gelman 2011;
Betancourt 2017). This has allowed for more widespread usage of
MCMC (and thus Bayesian inference) in geophysics (Fichtner &
Simutė 2018; Fichtner et al. 2019). One of the challenges with
MCMC is that it often requires significant manual tuning of the
sampling process to ensure convergence and mixing; another is that
distributions with multimodal behavior can be difficult to sample
from. An alternative class of techniques for Bayesian inference can
be generally described as variational inference (VI) methods. With
VI, the goal is to cast the inference problem as one of optimization,
in which the target distribution is most commonly approximated by
a parametric family of distributions. VI has seen some recent usage
within geophysics research (Nawaz & Curtis 2019, 2018; Zhang &
Curtis 2021). One notable advancement in VI is an alternative called
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Stein variational inference (SVI, Liu & Wang 2016), in which a col-
lection of particles is iteratively optimized to approximate a target
distribution. It is better suited than standard VI techniques at han-
dling multimodal distributions, as the number of modes does not
need to be known a priori, and does not require a parametric family
of distributions to be assumed. The recent work of Zhang & Curtis
(2021) outlined a method using SVI for full-waveform inversion,
demonstrating that the SVI approach compared favourably with the
results from Hamiltonian Monte Carlo (HMC, Hoffman & Gelman
2011). In addition, Zhang & Curtis (2021) demonstrated that the
SVI is highly parallelizable and could be more efficient than HMC
for larger problems; however they found that the main bottleneck
was the computational cost of the finite difference forward model
simulations.

Recent advances in deep learning have led to the development
of physics informed neural networks (PINNs, Raissi et al. 2019),
which are designed to learn solutions to partial differential equa-
tions (PDEs). Such approaches have a number of appealing prop-
erties that are not present with conventional approaches like finite
difference methods (Eaton 1993); for example the solutions can be
made differentiable, are often mesh-free, and can be rapidly calcu-
lated upon demand. These properties make PINNs well-suited to
be used as a forward model for solving inverse problems since it
often is desirable to take gradients of an objective function, which
is indeed the case for SVI.

Our contributions, as described in this paper, are as follows:
(1) we develop a framework for earthquake hypocentre inversion
using SVI; (2) we incorporate a PINN trained to solve the Eikonal
equation as a forward model; (3) we perform experiments on the
hyperparameters of the inverse problem to characterize their effect
on the solution and (4) we benchmark the method against a catalog
of earthquakes from Southern California.

2 B A C KG RO U N D

2.1 Stein variational inference

Variational Inference (VI) is a class of approximate Bayesian infer-
ence techniques where, rather than sampling from a target distri-
bution, the problem is cast as one of optimization. For two random
variables x and y, let p(x) denote the prior on x, p(y|x) the likelihood
function, and p(x|y) the posterior over x after observing (condi-
tioning on) y. Using Bayes rule, these quantities are related as,
p(x|y)∝p(y|x)p(x). In standard VI, a flexible family of parametric
distributions dependent on the parameters λ, q(x,λ), is used to ap-
proximate p(x|y). Let the Kullback–Leibler divergence between p
and q be defined as,

DK L (q(x,λ), p(x |y)) :=
∫ ∞

−∞
q(x, λ) log

(
q(x,λ)

p(x |y)

)
dx . (1)

In essence, DK L measures how different two distributions are, with
a value of 0 indicating p and q are identical. In typical VI prob-
lems, DK L is minimized with respect to the parameters of q(x, λ).
In the simplest scenarios, q(x,λ) might take the form of a multi-
variate Gaussian distribution, and thus the goal is to learn the mean
vector and covariance matrix. This all assumes that the family of
distributions q(x,λ) is even able to reasonably approximate p(x|y).

An alternative way to perform VI is by using non-parametric
estimates of p(x|y). One such approach is termed Stein Variational
Inference (SVI), in which q(x, λ) is taken to be a collection of Dirac
delta functions. A single delta function minimizing DK L would
coincide with the maximum a posteriori (MAP) point of p(x|y).

Thus, with SVI, the problem statement then is to arrange the set of
delta functions in proportion to p(x|y), while still satisfying eq. (1).
The main challenge is to prevent the delta functions from collapsing
to the same MAP point; this is solved in SVI by introducing a
mechanism for repulsion.

We now provide a rigorous mathematical treatment of SVI. Let
H denote a reproducing kernel Hilbert space on the domain x, with
a positive definite reproducing kernel κ , endowed with the inner
product 〈 ·, ·〉 and the norm ‖ · ‖H. We further define Hd , as a
set of multivalued functions, with d values, with the corresponding
norm ‖ · ‖Hd , where for any f = [ f1, f2, . . . , fd ] ∈ Hd we have
fi ∈ H ∀i ∈ [1, 2, . . . , d].

For a function f ∈ Hd , we define Stein’s operator,A, endowed
with Hd and p as,

(A f )(x) = f (x)∇x log p(x)� + ∇x f (x). (2)

In this equation, the first term on the right-hand side is an outer
product, while the second term on the right-hand side is the gradient
of a vector-valued function.

We further define a kernelized Stein’s discrepancy between two
distributions p and q using Hd is as follows:

D(q, p) := max
f ∈Hd s.t., ‖ f ‖Hd ≤1

Ex∼q [trace (A f (x))]2 . (3)

This discrepancy equals zero when p = q. Fortunately, the maxi-
mization in eq. (3) has a closed-form solution D(q, p) = ‖ f ∗

q‖Hd

where f ∗
q := Ex∼q [Aκ(x, ·)] is the maximizer.

Now consider the Kullback–Leibler divergence between q and
p, that is DK L . We aim to find a gradient direction g (a function),
such that g maximally reduces DK L . Using g, we can use gradient
descent with learning rate α and update q ← q − αg to reduce the
DK L , and make the q closer to p. It is known that for the kernelized
Stein’s discrepancy, the direction g ∈ H that provides the direction
of maximal change is g := f ∗

q (Liu & Wang 2016). In the following,
we provide an update rule to update q and approximate the posterior
p given observed data, moving in the negative direction of maximum
change.

We represent q with a set of particles, that is a collection of
many delta Dirac measures. {xi }n

i=1, where q approximates p(x|y).
In the following, we update q, and make it closer to p by moving the
particles. Therefore, for the update direction f ∗

q = Ex∼q [Aκ(x, ·)],
at each point x, we have,

f ∗
q (x, λ) =

n∑
i=1

Aκ(xi , x)

=
n∑

i=1

[κ(xi , x)∇x ′ log p(x ′)|x ′=xi + ∇x ′κ(x ′, x)|x ′=xi ] (4)

with the updating rule given by,

xl+1
i ← xl

i − αl f ∗
q (xl

i ). (5)

Here αl is the step size at the lth epoch. For the choice of kernel,
we use the Radial Basis Function (RBF), κ(x ′, x) = exp(− 1

h ‖x −
x ′‖2), with h representing the width of kernel, for its empirical and
universal approximation properties. As discussed above, the update
in eq. (5), updates q (through updating the particles distribution)
at each time step to make it closer to p in the Stein’s discrepancy
sense.

To give intuition for the SVI procedure, we applied it to two ex-
ample distributions constructed from mixtures of Gaussians (Stage
1, Fig. 1). Particle locations are first randomly selected within the
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Figure 1. SVI applied to two examples distributions, each composed of a mixture of Gaussians. Stage 1 demonstrates the true posterior field. Stage 2 represents
the initial randomized particle locations selected from a uniform prior. Stage 3 involves updating the particle locations to minimize the kernelized Stein
discrepancy. By Stage 4, the optimized particle locations with locations have stabilized.

domain using a uniform prior (Stage 2, Fig. 1). The particle loca-
tions are updated by eq. (5) (Stage 3, Fig. 1), with particles moving
to minimize the kernelized Stein discrepancy. Once the particle lo-
cations remain static for multiple steps, the procedure terminates
(Stage 4, Fig. 1). The final density of the particles (shown by the
contours in Stage 4 Fig. 1) closely approximates the posterior distri-
bution, demonstrating the validity of this method in approximating
complex multimodal distributions.

2.2 Physics Informed Neural Networks for Ray Tracing

In solving inverse problems for earthquake hypocentres, the most
common approach is to use a ray theoretical forward model to
calculate the expected traveltimes, T, for seismic waves propagating
from a given source location to a receiver location. In heterogeneous
3-D earth models, the Eikonal equation is often solved to determine
T (e.g. Rawlinson & Sambridge 2005),

‖∇r Ts→r‖2 = 1

V (�xr )2
= S (�xr )2

, (6)

where ‖ · ‖2 is the Euclidean norm, Ts → r is the traveltime through
the medium from a source location s to a receiver location r, Vr is the
velocity of the medium at the receiver location, Sr is the slowness
of the medium at the receiver location and ∇r the gradient at the
receiver location.

The factored Eikonal formulation used throughout this methods
mitigates the strong singularity effects at the source location by
representing the traveltime as a deviation from a homogeneous
medium with V = 1 (Treister & Haber 2016). The factored traveltime
form can be represented by:

Ts→r = T0 · τs→r , (7)

where T0 = ‖ �xr − �xs‖, representing the distance function from the
source location and τ the deviation of the traveltime field from a
model traveltime with homogeneous unity velocity. Substituting the
formulation of eq. (7) into eq. (6) and expanding using the chain
rule, then the velocity can be represented by;

V( �xr )=
[

T 2
0 ‖∇

r
τs→r‖2+2τs→r ( �xr − �xs)·∇

r
τs→r + τ 2

s→r

]− 1
2

. (8)

Smith et al. (2020) developed a method to solve the factored Eikonal
equation using PINN, leveraging their inherent differentiability,

without needing finite-difference solutions for training. Once fully
trained, a network describing the traveltime between any source–
receiver pair can be represented by:

Ts→r = fθ ( �xs, �xr ) , (9)

where Ts → r is the traveltime between the source location �xs and
receiver location �xr and f is the neural network with weights and
biases given by θ . Gradients of the traveltimes are computed with
automatic differentiation and used to determine the velocity at a set
of receiver points. These ‘predicted’ velocity values are compared
with the user defined ‘true’ velocity values at these same locations
and used to define a misfit. The misfit is then minimized with
respect to the parameters of the neural network. This results in a
network that can rapidly determine the traveltime between any two
points within the user-defined 3-D velocity volume. It should be
emphasized that the neural network model is valid only for a single
fixed velocity model; thus, changing the velocity model even slightly
would require retraining of the neural network in some form.

The PINN approach has several properties that are mathemati-
cally advantageous in solving inverse problems over conventional
methods. First, the solutions to the Eikonal equation are mesh-
independent, that is they are not discretized on a grid and can be
evaluated at truly any point within the 3-D medium. Secondly, the
network is a forward model that is differentiable, allowing the user
to rapidly determine the gradient of the traveltime relative to the
source and receiver locations. This also enables computing gra-
dients of downstream objective functions, such as the recovered
velocity of the network, seismic ray multipathing or hypocentral in-
version. Thirdly, by approximating the Eikonal equation with a deep
neural network, the optimization part of the inverse problem is eas-
ily solved with graphical processing units (GPUs). This allows for
the quick computation of traveltimes from the pre-trained model in
addition to the higher order partial derivatives of the traveltime rela-
tive to input terms; an imperative feature for the low computational
cost of the inversion procedure in the later sections.

3 M E T H O D S

3.1 Overview

We now present an approach for probabilistic hypocentre inversion
that uses a PINN as a forward model and SVI to approximate
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the posterior distribution. The method consists of several primary
steps:

(i) An EikoNet model is trained for a given Earth velocity model
to solve the Eikonal equation. This is performed for both P and S
waves.

(ii) A collection of particles is randomly initialized throughout
the geographic study area. These represent preliminary hypocentre
locations.

(iii) Traveltimes are calculated with EikoNet from each particle
to every receiver with an observation.

(iv) The synthetic traveltimes are used together with the data to
calculate a kernelized Stein discrepancy (loss function).

(v) The gradients of the loss are calculated with automatic dif-
ferentiation and used to collectively update the particles’ locations.

(vi) Steps i–v are repeated until convergence. The final collection
of particle positions will approximate the posterior distribution of
the hypocentre.

(vii) Uncertainty estimates are extracted from the particles by
determining the percentile of the particle locations along each of
the dimensions.

Next, we provide a detailed discussion of each stage of the pro-
cedure, with the outline of the inversion given in Fig. 2.

3.2 Constructing the forward model

Throughout this study we train EikoNet traveltime models using
a set of constant training parameters and network architecture as
described in Smith et al. (2020) and supplied in Table 1. A model
region is defined spanning our longitude, latitude, depth regional of
interest, with xmin and xmax locations as [117◦30′W, 32◦30′N, −2
km] and [115◦30′W, 34◦30′N, 50 km], respectively. The grid is pro-
jected to a UTM coordinate system, with random source–receiver
locations selected within the UTM model space. These points repre-
sent the training locations, with different velocity models discussed
below.

In many earthquake location procedures the complex geometry of
the subsurface is poorly understood, with the assumption that lateral
variations in velocity are negligible compared to velocity variations
in depth. As such 1-D velocity structure describing how the velocity
changes with depth are specified. These models typically have inde-
pendent velocity structure defined for both the P-wave and S-wave
arrivals, or a scaling relationship of Vp/Vs. It is important to under-
stand how reliable these methods are for location procedures such
as HypoSVI, as this would be a typical starting model for many use
cases. In addition, understanding of the computational demand for
training more simplistic traveltime models, informs the feasibility of
the method on typical computational systems. We investigate these
problems for our region of interest by training EikoNet traveltime
models from the Vp and Vs velocity structure shown by the blue dots
in Fig. 3(a). We interpolate the velocity at the point locations as the
linear interpolation of the observed velocity values. Two indepen-
dent EikoNet neural networks are trained independently for the Vp
and Vs velocity structure using the network parameters specified in
Table 1. The training of each model took 10 epochs, with roughly
a 10 min training time on a Nvdia V100 GPU and ∼20 min on a
free Colab GPU (either a Nvidia K80,T4 or P100). Once trained
the traveltime models can be validated by comparing the imposed
observed velocity to predicted velocity, determined as the analytical
gradient of the traveltime over the neural network, for a series of 1 ×
105 source–receiver pairs within the 3-D domain. Fig. 3 outlines the

comparison of the observed velocity structure and the predicted ve-
locity, with the variance of the predicted velocity within 0.05 km s–1

of the observed values. The consistent velocity structure and low
computational overhead shows that this method is viable regardless
of the available computational infrastructure.

For this study, our focus area is Southern California, and we
use the SCEC-CVM-H velocity model (Shaw et al. 2015, version
15.1.0). We train EikoNet models to determine the traveltime within
the complex 3-D velocity structures. The models are trained on 1
× 106 randomly selected source–receiver points within the domain,
with example slice at longitude=115◦30′W ± 1.8′ given for the
P- and S-wave velocity structure in Figs 4(a) and (b), respectively.
The EikoNet models once trained represent the traveltime and pre-
dicted velocity between any points, as such we show the recovered
velocity model colourmap and traveltime contours (at 2 s spac-
ing) for a earthquake source at [115◦30′W, 31◦12′, 25 km] on a
receiver grid as separation [latitude,depth] =[0.05◦, 0.5 km] with
longitude=115◦30′W. This example shows consistent agreement
between the observed and predicted velocity models, able to rec-
oncile the sharp velocity contrasts which create deflection in the
traveltime fields. This example demonstrates the viability of this
method in complex 3-D velocity structures.

3.3 Inverse problem formulation

An earthquake hypocentre, m, is composed of three spatial coor-
dinates, [x, y, z], and the origin time, to. Most commonly, the data
used to locate earthquakes are measured times of seismic P- and
S-wave arrivals (‘phase picks’) over a network seismic instruments.
These phase picks define a set of absolute arrival time observations
d = Tobs, where d ∈ R

N . In a Bayesian framework (Lomax et al.
2000), inference on m is performed by combining prior knowledge
together with the observations,

p(m|d) ∝ p(d|m)p(m) (10)

where p(m|d) is the posterior distribution, p(m) is the prior distri-
bution, and p(d|m) is the likelihood.

A simple example of p(d|m) for hypocentre inversion is,

p(d|m) = exp

⎛
⎝−1

2

∑
obsi

[
Tobs − Tpred

]2

σ 2
i

⎞
⎠ (11)

where σ i is an estimate of uncertainty and,

Tpred = to + fθ ( �xs, �xr ) , (12)

is a non-linear forward model, i.e. a solution to the Eikonal equation
plus the origin time. Thus, the forward model in this problem is a
PINN. Since �xs is included as an input to the neural network, this
allows for downstream gradients to be taken with respect to it.

More recently, a likelihood function based on the equal differ-
ential time method (Lomax et al. 2000, EDT) has seen increasing
usage. The EDT likelihood builds differential times from all pairs
of phases, and in the process, decouples origin time, to from the
spatial coordinates of the hypocentre. The formulation is given by;

p(d|m) =
⎡
⎣∑

a

∑
b

1√
σ 2

a + σ 2
b

exp (A)

⎤
⎦

N

, (13)

A = −
[(

Tobs(a) − Tobs(b)

) − (
Tpred(a) − Tpred(b)

)]2

σ 2
a + σ 2

b

, (14)
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(a)

(b) (c)

(d)

Figure 2. Overview of the inversion procedure. Panel (1) the optimization block that is applied to the particles to minimize the kernelized Stein discrepancy.
(a) Initial particle locations are supplied, (b) predicted traveltimes are determine from all particle locations to observation locations, (c) particle locations are
then updated by a step in the direction that minimizes the kernelized Stein discrepancy and (d) updated particle locations are returned. Panel (2) demonstrates
the optimization scheme applying these optimization blocks to update all the particle locations as a single batch between epochs. Red triangles represent
observation locations. Black points represent particle locations. Contours represent the particle kernel density. White star represents the median location of the
particles representing the optimal hypocentral location.

Table 1. EikoNet training paradigm used to learn velocity models.

Parameter Value

Data set size 1 × 106

Validation fraction 0.1
Batch size 752
Optimizer ADAM (+ scheduler)
Learning rate 1 × 10−5

Sampling type Weighted random distance
Sampling type bounds [0.1,0.9]
Domain normalization Offset Min-Max Normalization

Network architecture Dense 6 → 32 + Dense 32 → 512
+ 10 × Residual Blocks 512 → 512
+ Dense 512 → 32 + Dense 31 → 1

ELU activation function

where a and b are different phase arrival time observations, σ is a
phase dependent estimate of uncertainty, and N is the total number
of differential times. In addition to reducing the number of free
parameters by one (the removal of the origin time), this formulation
acts to minimize the effects of outliers, which are particularly com-
mon with automated picking algorithms. This robustness results
from the fact that in the EDT likelihood, the errors are combined
in an additive manner. Each term in eq. (15) produces a hyperbolic
error surface that decays like a Gaussian in the direction normal
to each point on the hyperbola. Thus, eq. (15) can be viewed as
producing a stack of hyperbolas with relatively limited intersection,
which creates robustness in the presence of strong outliers. How-
ever, the downside is that it results in posterior distributions that

are highly multimodal, making MCMC methods and standard vari-
ational inference schemes difficult to use for this problem (Lomax
et al., 2000). To reduce the amplitude of the multimodal distribution
of the posterior we can instead formulate the log-likelihood as that
of a Laplacian differential time likelihood function. This represents
the posterior space as a stacking of bands instead of hyperbolic
surfaces. The equation then takes the form:

p(d|m) =
∑

a

∑
b

√
2

∣∣∣∣∣∣
(
Tobs(a) − Tobs(b)

) − (
Tpred(a) − Tpred(b)

)
√

σ 2
a + σ 2

b

∣∣∣∣∣∣
+ log

(
1(

σ 2
a + σ 2

b

)√
2

)
(15)

Throughout this manuscript for all the testing we will use this Lapla-
cian differential time likelihood function.

The origin time is reintroduced by using the optimized earthquake
location to determine the predicted origin times to each of the
observational locations, determining the origin time as the median
of the predicted origin times. The uncertainty is then defined by the
median absolute deviation (MAD) from the predicted origin time.
We use a uniform prior, p(m), with samples selected within the
model domain specified in the Eikonal PINN.

The uncertainty in the posterior distribution is assigned as a com-
bination of the observational, σ obs, and forward model uncertainty,
σ pred, given as

σ 2 = σ 2
obs + σ 2

pred . (16)
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Figure 3. EikoNet trained traveltime formulation for a 1-D velocity model only changing in depth (Z). Each curve represent a different model computed for
both the P-wave velocity structure (VP) and S-wave velocity structure (VS). Blue points represent the user defined velocity values at depths, blue lines the
linear interpolation of velocity between points. Grey points represent the predicted velocity from EikoNet for 1 × 105 randomly source–receiver pairs for each
of the velocity models.

Figure 4. EikoNet trained traveltime formulation for the complex 3-D velocity of SCEC-CVM-H. Plots represent a slice in the 3-D structure taken at
longitude=115o30′W. (a) and (b) represent the P-wave (VP) and S-wave (VS) velocity structures for the training points within ±1.8′ of the longitude slice
and within the latitude and depth domain of the model space. Panels (c) and (d) represent the predicted velocity structure colourmap and predicted traveltime
contours, at 2 s intervals, for the P-wave and S-wave EikoNet models.

The observational uncertainty represents uncertainty in each of the
observational times, with an expected standard deviation for each
observation time supplied by the user. This value is then converted
to a variance to define σ obs for each observation. The forward model
uncertainty is constructed as a function of the predicted traveltime
for each of the observational locations (similar to that given in
Lomax et al. 2000,for LOCGAU2), given by

σpred =
⎧⎨
⎩

σmin, for σ f TP < σmin

σfracTpred, for σmin ≤ σ f TP ≤ σmax

σmax, for σ f TP > σmax,

(17)

where σ f is the fraction of the traveltime to use as uncertainty,
bounded within the max and min uncertainties specified by σ min

and σ max, respectively. Throughout this work we use the [σ f, σ min,
σ max] = [0.1, 0.1 s, 2.0 s], discussing the effects of these parameters
on synthetic testing within Section 4.4.

A SVI procedure is used together with the Laplacian differential
time likelihood function. We use a RBF kernel, for its practical and
universal approximation properties. First, we initialize N particles
randomly using a uniform prior over the 3-D study area. For each
of these particle locations, we calculate corresponding traveltimes
using EikoNet forward model, evaluating the posterior (to within
the normalization constant), and determine the kernelized Stein
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Table 2. HypoSVI parameters used in earthquake
location techniques.

Parameter Value

Number of particles 150
Observation weights [0.1, 0.1 s, 2.0 s]
Radial basis function 15

discrepancy. Then, we calculate the gradients of this loss function
particle-wise with respect to the hypocentral coordinates using au-
tomatic differentiation, which is possible due to the differentiability
of the PINN. We use these gradients together with the ADAM op-
timizer (Kingma & Ba 2014) to update the particle locations until
convergence, where the optimal hypocentral location is consistent
across multiple epochs. The optimization is stopped using an early
stopping criterion, where the particle locations are consistent for
at least 5 epochs Video S1 demonstrates the convergence for the
example outlined in Fig. 2.

The next step is to extract summary statistics from the posterior
distribution. We determine the 95 per cent credibility interval of the
particle locations in each of the Cartesian dimensions and take this
as the uncertainty in the earthquake location. All particles particle
locations are returned for each earthquake, for additional high level
statistical analysis.

4 E X P E R I M E N T S

4.1 Method validation

In this section we first demonstrate the earthquake inversion scheme
on a series of synthetic tests. We construct a catalogue of synthetic
earthquake locations across the region, determining the traveltime
to a grid of observation points at fixed elevation of 0 km, before
applying a 0.01 s uncertainty in the synthetic phase arrival and in-
verting to determine the earthquake location and uncertainty. The
earthquake locations are at a fixed latitude and depth of 33◦00′N
and 5 km, respectively, with longitude varying from 117◦23′W to
116◦57′W at 9′ separations. The recovered optimal hypocentre and
location uncertainty are then compared with the true earthquake
locations and an expected 95 percentile contour from a the solution
of a grid-search inversion. We vary the possible user defined param-
eters with the optimized parameters given in Table 2 and earthquake
locations in Fig. 5. However, we expect that these parameters will
need to be varied somewhat depending on the exact application,
for example if the error models or network geometry are changed
significantly. As such we recommend that initial synthetic testing is
undertaken before real data is inverted. Outlined below are discus-
sions on how each hyperparameter affects the recovered locations
for this study, with corresponding Figs S1–S3.

4.2 Number of particles

The number of particles used in SVI is of great importance for the
resolution of the resolved earthquake location. If the number of par-
ticles is too small then the particles density is unable to adequately
represent the posterior distribution. However, a large number of
particles would have increasing computational demand on the in-
version procedure and is intractable for large earthquake catalogues.
We specify a optimal number of samples equal to 150 and find that
an increase in the number of particles does not provide additional
information on the the earthquake location, but reducing the number

of particles greatly (e.g. 10 particles) effects posterior. Additional
plots for variations of number of particles, with remaining parame-
ters set equal to Table 2, is given in Fig. S1.

4.3 Influence of the kernel

The RBF kernel can be represented by κ(x, x ′) = exp(− 1
h ‖x −

x ′‖2), where h is the shape parameter and x the pairwise particle
difference. The second term in the kernelized Stein discrepancy (eq.
4) represents the gradient of the kernel, acting as a repulsive force to
prevent all the particles from collapsing into local modes. This term
reduces to

∑
i

2
h (x − xi )k(xi , x) that drives x from the neighboring

xi that have large k(xi, x). Understanding the trade-off for the shape
parameter is important as larger values could affect the recovered
posterior. Liu & Wang (2016) defined a dynamic shape parame-
ter with the value changing depending on h = med2/log n, where
med is the median distance between pairwise particles. The def-
inition

∑
j k(xi , x j ) ≈ n exp(− 1

h med2) = 1 demonstrates that for
each xi the contribution from its own gradient and the influence
from other points balances out. We investigate the variation of the
RBF shape parameters on the recovered synthetic earthquake lo-
cations finding that increasing the parameter acts to drive particles
further away, decreasing the particle density close to the optimal
recovered hypocentral location (Fig. S2). We decided to use a static
shape parameter of 15km, to mitigate any difference that could oc-
cur to the posterior from multiple runs of the same observations for
a dynamic shape parameter. We attribute this parameter as a user
defined variable that should be calibrated for the regional context of
interest, expecting the optimal hypocentral location to not vary that
much but the returned location uncertainty to increase with larger
RBF values.

4.4 Error models

The total uncertainty assigned to the inverse problem is a combina-
tion of the picking uncertainty and the forward model uncertainty
due to the velocity structure. As described previously, we follow
Lomax et al. (2000) and characterize the uncertainty in the forward
model as a fraction of the traveltime. This is a reasonable choice
as the uncertainty in the predicted traveltimes is expected grow in
proportion to the traveltime. In our hyperparameter investigation we
found that a fraction of 0.1 should be used, as lower values lead to
significant mislocation of the recovered events (Fig. S3). The upper
and lower bounds to the allowed error has less of an effect on our
synthetic testing, which we attribute to the synthetic station loca-
tions being regularly spaced. For observational data that is clustered
spatially the upper and lower bounds could be of great importance
and should be investigated with synthetic examples for the specific
network geometry.

4.5 Computational demands

The number of observations going into a inversion affects the com-
pute time, as each observation requires predicted traveltime for-
mulations from EikoNet and gradients to be computed. Here, we
investigate the computational cost of the inversion procedure while
increasing the number of observations. We replicate an increasing
number of observations by copying the synthetic station deploy-
ment locations multiple times, labelling them as different station
names but comprising the same arrival times. This synthetic testing
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Figure 5. Synthetics earthquake location recovery for a synthetic seismic array. Panel (a) represents a map view of the synthetic earthquake locations and
synthetic stations locations. Black points represent the synthetic earthquake location latitude and longitudes, at a fixed depth of 5 km. Yellow triangles represent
the synthetic station locations, at a fixed depth of 0 km. Black line represent a cross section at a fixed latitude, with the cross section given in (b). Panel (b)
represents the true earthquake locations, black points, recovered optimal location, blue dots, posterior determined by the particle density, red contours and grid
search derived posterior at 95 per cent, grey line.

Table 3. HypoSVI computational cost on a Nvidia V100
GPU with different number of observations and correspond-
ing differential time pairs. The remaining parameters used
in this synthetic test are given Table 2.

# of observations
# of differential

times
Time per
event(s)

32 496 6
128 8128 17
512 130 16 64
1024 523 776 155
1408 990 528 247
1728 1 492 128 336
2028 2 055 378 439

was chosen to minimizing the changing effect on the location es-
timate, which would occur if additional synthetic station locations
are provided. All other location hyperparameters are fixed at values
given in Table 2. The earthquake locations are then determined for
the varying number of observations and the total number of pair-
wise differential times, with the average computational time for a
Nvidia V100 shown in Table 3. The computational time even for
the 2048 observations, 2 055 378 differential times, only takes 439
s per event. These synthetic tests demonstrate that this approach
is computationally scaleable with computational time increasing as
a linearly in a log–log space of computational time vs number of
observational differential times.

5 C A S E S T U DY: A P P L I C AT I O N T O
E A RT H Q UA K E S WA R M S I N S O U T H E R N
C A L I F O R N I A

5.1 Background

To further validate the developed method, we apply it to real earth-
quakes occurring within the Southern California region, with region
defined in Section 3.2. This study area was chosen as it encompasses
a large seismic network and complex 3-D regional velocity struc-
tures (Allam & Ben-Zion 2012). We used the detections and phase
picks from the open source Southern California Earthquake Data
Centre (SCEDC) phase arrival observational catalogue, for the fist

10k events starting 2019-01-01. The events and phase picks used
have all been manually reviewed by analysts at the Southern Cali-
fornia Seismic Network (Hutton et al. 2010).

5.2 Earthquake location comparisons with NonLinLoc

We infer hypocentres for the 10k earthquakes using two different
velocity models (1-D and 3-D cases, described in Section 3.2). The
hyperparameters used for the inversions are outlined in Table 2
with detailed explanation of the reasoning behind the parameter
definition outlined in Section 4. The catalogues are generated on
a Nvidia V100 GPU with an average of 5 s per event, varying
depending on the number of observations in the inversion procedure,
with on average ∼30 observations per event. Since the calculation
of traveltimes from EikoNet is independent on the complexity of the
velocity model (once the network has been trained), the processing
takes equal time for both the 1-D and 3-D trained models. Example
inversions for three events are shown in Fig. 6.

To understand the validity of our location technique we compare
our earthquake catalogue, with a catalogue determined using the
conventional earthquake location software, NonLinLoc. NonLin-
Loc is a non linear earthquake technique leveraging finite-difference
traveltime solutions; Gaussian or equal-differential likelihood func-
tions; and, likelihood estimations schemes using oct-tree, grid-
search or Markov Chain Monte Carlo (MCMC). Traveltimes are
computed by solving the eikonal using a finite-difference approach
outlined in Podvin & Lecomte (1991). For a 1-D velocity struc-
ture, only varying in depth, the package computes the traveltimes
as an radial 2-D finite-difference traveltime model that depends on
the radial distance from the observation point and the depth, saving
these as independent traveltime look-up tables. In contrast, for com-
plex 3-D velocity structures the traveltimes are computed for a user
defined gridded series of receiver locations, with each observation
saved as a separate traveltime look-up table. Since the storage and
computational requirements for a NonLinLoc using the complex 3-
D velocity for a very high resolution location grid, this method was
intractable as it would return large gridding artefacts to the recov-
ered earthquake locations and predicted location uncertainty, which
are not directly comparable to the non-gridded solutions of the Hy-
poSVI. Instead we compare the HypoSVI and NonLinLoc locations
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Figure 6. Example earthquake locations for three earthquakes in the Catalogues using traveltimes derived from the 3-D regional velocity model. Left-hand
panels represent the particle locations changing at different epochs in SVI. Right-hand panels represent a zoom in of the final event locations, with the particle
locations shown relative the recovered optimal hypocentral location. Kernel density contours are shown in red for the clustered particles.
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Figure 7. Comparison of earthquake locations between the HypoSVI locations using a regional 1-D velocity and SCEC-CVM-H 3-D velocity structure.
Left-hand column represents the latitude/longitude map of the detected earthquakes given by red dots, observational station locations given by blue triangles
and mapped faults by grey lines. Right-hand column represents a longitude vs depth cross-sections of earthquakes. Panels (a) and (b) are the locations
determined from HypoSVI with a EikoNet model trained on a regional 1-D velocity. Panels (c) and (d) are the locations determined from HypoSVI with a
EikoNet model trained on a regional SCEC-CVM-H 3-D velocity structure.

Figure 8. Zoom in earthquake location comparison for the region for subregion of [117◦W, 33◦N] to [116◦W, 33◦45′N]. Panels (a) and (b) are the locations
determined from HypoSVI with a EikoNet model trained on a regional 1-D velocity. Panels (c) and (d) are the locations determined from the NonLinLoc
inversion procedure.
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Figure 9. Earthquake distance comparison for the NonLinLoc and HypoSVI 1-D catalogue for the region [117◦W, 33◦N] to [116◦W, 33◦45′N], projected to
the local X, Y, Z UTM coordinate system. Panels (a)–(c) black dots represent the relative distance between catalogue event locations in X, Y, Z; with red dot
representing the mean location. Panels (d)–(f) black points relative distance between catalogue event locations normalized by the NonLinLoc 2-std location
uncertainty. Red-dashed region represents the catalogue events with a relative distance less than the location uncertainty.

using the 1-D velocity structure, with the NonLinLoc traveltime and
initial location grids resolved to 1 and 2 km, receptively. The lo-
cation is determined using a equal-differential traveltime (EDT)
likelihood function and octree sampling technique. The location
uncertainty of the recovered NonLinLoc catalogue is determined as
the standard error in X, Y, Z to 2-std using the diagonal of the covari-
ance matrix. The remaining NonLinLoc user parameters are given
in the full control file in the Supporting Information. The HypoSVI
earthquake catalogues for the 1-D and 3-D velocity structures are
given in Figs 7(a)–(b) and (c)–(d), respectively.

For comparison we derive a NonLinLoc catalogue for subregion
of [117◦W, 33◦N] to [116◦W, 33◦45′N]. This region comprises a
total of 6307 events in the HypoSVI 1-D catalogue (Figs 8a and
b), with the NonLinLoc comprising 6383 events (Figs 8c and d).
Manual inspection showed that the events present in the NonLin-
Loc catalogue but not HypoSVI catalogue, are events that are locate
external to the subregion in the HypoSVI catalogue but are pro-
jected to the edge of NonLonLoc search grid, having large location
uncertainties. For the remaining events we determine the relative

location differences between the two catalogues by projecting both
catalogues to a local Universal Transverse Mercator (UTM) coor-
dinate system and determining the distance between the events in
kilometres in a local XYZ coordinates. The relative distance of the
NonLinLoc locations minus the HypoSVI 1-D locations are given
in Figs 9(a)–(c). The relative locations demonstrate no consistent
spatial bias, with the mean location difference given by [X, Y, Z]
= [+0.07 km, +0.19 km, −0.41 km], as shown by the red dot in
Figs 9(a)–(c). In addition, we normalize the location difference by
the location uncertainty from the NonLinLoc catalogue. Figs 9(d)–
(f) gives the normalized location distances, with 83.29 per cent of
the events having a relative distance less than that of the NonLinLoc
location uncertainty, as shown by the points within the dashed box.
Although there is similarity between the catalogues, some bias is
observed in the NonLinLoc catalogue with many events displaying
gridding artefacts attributed to a receiver grid required for the in-
version procedure. In addition, this subregion was selected over the
global data set as the NonLinLoc procedure was computationally
intractable across the whole region.
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6 D I S C U S S I O N

The experiments of the previous section demonstrate that the
methodology developed in this paper is able to reliably approx-
imate the posterior distribution for earthquake hypocentres from
traveltime observations by tuning the parameters λ of a paramet-
ric distribution to approximate the posterior. We believe that the
general setup of the methodology could extend to other geophysical
inverse problems such as tomography, however these other scenarios
would of course require a differentiable forward model to efficiently
compute the necessary gradients.

The non-gridded earthquake locations obtained with HypoSVI
demonstrate improvement over those derived with gridded schemes.
This results from the continuous nature of the SVI procedure and
forward model EikoNet. In addition, the HypoSVI results show
similar earthquake locations for the regional 1-D and SCEC-CVM-
H 3-D velocity model, but with the computational time independent
of the velocity model provided. This has considerable advantages
over methods that require a high resolution 3-D traveltime model
for each station, making the computational cost of the earthquake
location inversion procedure intractable for the specific examples
in this study.

Another advantage of our approach is that it is computationally
efficient and can make use of state of the art GPU hardware and
modern deep learning APIs like PyTorch. This allows for rapid cal-
culation of the gradients with automatic differentiation. As GPU
hardware improves, such as through increased memory, these per-
formance gains will be passed on to the algorithm which will allow
for even larger data sets to be worked with than currently possible.
By combining SVI with EikoNet, we are able to evaluate observa-
tions at any point within the 3-D volume without retraining, that
is the forward model is valid for any array geometry. Due to the
highly parallelized nature of calculations with neural networks, our
method scales well to very large networks, which may be important
for emerging technologies like distributed acoustic sensing (DAS).
This was demonstrated herein by the ability to locate an earthquake
with 2048 phase picks in 439 s. Thus, our HypoSVI approach is
ideal for handling the enormous data volumes that are starting to
emerge in seismology.

The procedure outlined in this manuscript requires a pre-trained
EikoNet traveltime model for a user supplied subsurface velocity
structure. This inherently assumes some prior knowledge of the
subsurface velocity structure, which could inherently be wrong,
giving false solutions. In future work the HypoSVI procedure could
be updated not only to optimize for the hypocentral locations, but
also leverage transfer learning techniques to update the EikoNet
for an improved velocity model for the region. For this idea, the
earthquake locations would be initially determined from the initial
velocity model. The EikoNet parameters would then be updated
to minimize the misfit between the observed and predicted arrival
times, by updating the velocity model using the adjoint-state method
of Sei & Symes (1994), while still satisfying the factored Eikonal
equation. Finally the SVI particles from the initial earthquake lo-
cations would be updated using the current iteration of EikoNet.
These procedures would be repeated several steps until misfit both
for the traveltime formulations and earthquake location posteriors
are minimized.

The current HypoSVI procedure is applied to individual events
with no relative relocation between event pairs. The procedure could
be expanded to a relative relocation scheme, using the relative trav-
eltime differences between events or even cross-correlation simi-
larities between the events. This relative relocation approach could

leverage the continuous traveltime formulations from the EikoNet
models.

7 C O N C LU S I O N S

In this paper, we developed a new approach to performing Bayesian
inference on earthquake hypocentres that combines a differentiable
forward model (Physics-Informed Neural Network, PINN) with
Stein Variational Inference (SVI). Unlike with MCMC sampling
methods, SVI approximates a posterior by solving an optimization
problem, where a collection of particle locations is jointly updated
in an iterative scheme. In this paper we use an EikoNet forward
model, but this could be replaced with any other differentiable for-
ward model. Thus, HypoSVI is a general variational approach to
hypocentre inversion. We validated the method with synthetic tests
and compared the locations for ∼10k events in Southern California
with those produced by the Southern California Seismic Network. In
particular, we focused on demonstrating the reliability of the method
in the presence of multimodal posterior distributions, which SVI is
well suited for handling. This is all possible because the PINN for-
ward model is differentiable at the particle locations, which is infea-
sible for many conventional grid-based forward models unless they
are finely meshed. We demonstrate consistent improvement over a
more conventional Bayesian hypocentre method, reducing gridding
artefacts and having inversion computational cost independent of
the velocity model complexity.
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DATA AVA I L A B I L I T Y

The earthquake phase arrival and station locations can be down-
loaded from the Southern California Earthquake Data Center
https://scedc.caltech.eduhttps://scedc.caltech.edu.

HypoSVI is available at the Github repository https://github.com
/Ulvetanna/HypoSVI, with additional runable Colab code supplied
at this Github url. The NonLinLoc control file used to generate the
manuscript earthquake catalogue can be found in the Supporting
Information.
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Fichtner, A. & Simutė, S., 2018. Hamiltonian Monte Carlo inversion of
seismic sources in complex media, J. geophys. Res., 123(4), 2984–2999.

Fichtner, A., Zunino, A. & Gebraad, L., 2019. Hamiltonian Monte Carlo
solution of tomographic inverse problems, Geophys. J. Int., 216(2), 1344–
1363.

Flinn, E.A., 1965. Confidence regions and error determinations for seismic
event location, Rev. Geophys., 3(1), 157.

Gama, I., Fischer, K.M., Eilon, Z., Krueger, H.E., Dalton, C.A. & Flesch,
L.M., 2021. Shear-wave velocity structure beneath Alaska from a
Bayesian joint inversion of Sp receiver functions and Rayleigh wave
phase velocities, Earth planet. Sci. Lett., 560, 116785.

Geiger, L., 1910. Herdbestimmung bei Erdbeben aus den Ankunftzeiten, K.
Gessell. Wiss. Goettingen, 4, 331–349.

Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. & Rubin,
D.B., 2013. Bayesian Data Analysis, 3rd edn, Chapman and Hall/CRC.

Hightower, E., Gurnis, M. & Van Avendonk, H., 2020. A Bayesian 3-D
linear gravity inversion for complex density distributions: application to
the Puysegur subduction system, Geophys. J. Int., 223(3), 1899–1918.

Hoffman, M.D. & Gelman, A., 2011. The no-u-turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo,https://arxiv.org/abs/11
11.4246

Hutton, K., Woessner, J. & Hauksson, E., 2010. Earthquake monitoring
in southern California for seventy-seven years (1932-2008), Bull. seism.
Soc. Am., 100(2), 423–446.

Jackson, D.D., 1979. The use of a priori data to resolve non-uniqueness in
linear inversion, Geophys. J. Int., 57(1), 137–157.

Jeffreys, H., 1935. Some tests of significance, treated by the theory of
probability, Math. Proc. Cambridge Philos. Soc., 31(2), 203–222.

Jordan, T. & Sverdrup, K., 1981. Teleseismic location techniques and their
application to earthquake clusters in south-central Pacific, Bull. seism.
Soc. Am., 71, 1105–1130.

Kingma, D.P. & Ba, J., 2014. Adam: a method for stochastic optimization, in
3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, pp. 1–15.

Liu, Q. & Wang, D., 2016. Stein variational gradient descent: a general
purpose Bayesian inference algorithm, 30th Conference on Neural Infor-
mation Processing Systems (NIPS 2016), 2378–2386, Barcelona, Spain.

Lomax, A., 2005. A reanalysis of the hypocentral location and related obser-
vations for the great 1906 California earthquake, Bull. seism. Soc. Am.,
95(3), 861–877.

Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C., 2000. Probabilistic
earthquake location in 3D and layered models, Advances in Seismic Event
Location. Modern Approaches in Geophysics, 18, 101–134, eds Thurber
C.H., Rabinowitz N., Springer.

Matsu’ura, M., 1984. Bayesian estimation of hypocenter with origin time
eliminated, J. Phys. Earth., 30, 451–468.

Nawaz, M.A. & Curtis, A., 2018. Variational Bayesian inversion (VBI) of
quasi-localized seismic attributes for the spatial distribution of geological
facies, Geophys. J. Int., 214(2), 845–875.

Nawaz, M.A. & Curtis, A., 2019. Rapid Discriminative Variational Bayesian
Inversion of Geophysical Data for the Spatial Distribution of Geological
Properties, J. geophys. Res., 124(6), 5867–5887.

Podvin, P. & Lecomte, I., 1991. Finite difference computation of traveltimes
in very contrasted velocity models: a massively parallel approach and its
associated tools, Geophys. J. Int., 105(1), 271–284.

Press, F., 1968. Earth models obtained by Monte Carlo Inversion, J. geophys.
Res., 73(16), 5223–5234.

Raissi, M., Perdikaris, P. & Karniadakis, G.E., 2019. Physics-informed neu-
ral networks: a deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Phys., 378, 686–707.

Rawlinson, N. & Sambridge, M., 2005. The fast marching method: an ef-
fective tool for tomographic imaging and tracking multiple phases in
complex layered media, Explor. Geophys., 36(4), 341–350.

Sei, A. & Symes, W.W., 1994. Gradient calculation of the traveltime cost
function without ray tracing, in SEG Technical Program Expanded Ab-
stracts 1994, pp. 1351–1354, Society of Exploration Geophysicists.

Shaw, J.H. et al., 2015. Unified Structural Representation of the southern
California crust and upper mantle, Earth planet. Sci. Lett., 415, 1–15.

Smith, J.D., Azizzadenesheli, K. & Ross, Z.E., 2020. EikoNet: solving the
eikonal equation with deep neural networks, IEEE Trans. Geosci. Remote
Sens., 1–12,

Tarantola, A. & Valette, B., 1982. IPQ Il atex, J. Geophys., 50, 1–16.
Treister, E. & Haber, E., 2016. A fast marching algorithm for the factored

eikonal equation, J. Comput. Phys., 324, 210–225.
Uhrhammer, R.A., 1980. Analysis of small seismographic station networks,

Bull. seism. Soc. Am., 70(4), 1369–1379.
Zhang, X. & Curtis, A., 2021. Variational full-waveform inversion, Geophys.

J. Int., 222(1), 406–411.

S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

HypoSVI supplementary.pdf
HypoSVI SupplementaryFile.in
HypoSVI SupplementaryVideo.mp4
Figure S1. Synthetics earthquake location recovery for changing
number of particles. An outline of observation and synthetic lo-
cations distributions is given in Section 4. Black points represent
the imposed synthetic earthquake location, blue dots the recovered
optimal location, red contours present the recovered posterior de-
termined by the particle density.
Figure S2. Synthetics earthquake location recovery for changing
values for the radial basis function shape parameter value. An out-
line of observation and synthetic locations distributions is given in
Section 4. Black points represent the imposed synthetic earthquake
location, blue dots the recovered optimal location, red contours
present the recovered posterior determined by the particle density.
Figure S3. Synthetics earthquake location recovery for changing
values for the forward model uncertainty in form [σ f, σ min, σ max].
An outline of observation and synthetic locations distributions is
given in Section 4. Black points represent the imposed synthetic
earthquake location, blue dots the recovered optimal location, red
contours present the recovered posterior determined by the particle
density.
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