
1. Introduction
The role of fluids in seismic and aseismic faulting processes has been of significant interest in the last few years. 
Mounting evidence indicates that fluids may play an important role in a diverse set of mechanisms that alter fault 
slip behavior ranging from earthquake triggering to slow slip events (SSEs).

The most prominent example of fluid and fault interactions is the clear link between fluid injection and induced 
seismicity, as originally pointed out by Raleigh et al. (1976); Hsieh and Bredehoeft (1981) and remains a crit-
ical issue (e.g., Ellsworth, 2013). This phenomenon has a straightforward mechanical explanation: higher pore 
pressures, due to injection, reduce the effective normal stress and thus the frictional resistance of the fault. This 
causes increased slip rate on faults and may accelerate the generation of seismic instabilities. This problem has 

Abstract Fluid-fault interactions result in many two-way coupled processes across a range of length scales, 
from the micron scale of the shear zone to the kilometer scale of the slip patch. The scale separation and 
complex coupling render fluid-fault interactions challenging to simulate, yet they are key for our understanding 
of experimental data and induced seismicity. Here we present spectral boundary-integral solutions for in-plane 
interface sliding and opening in a poroelastic solid. We solve for fault slip in the presence of rate-and-state 
frictional properties, inelastic dilatancy, injection, and the coupling of a shear zone and a diffusive poroelastic 
bulk. The shear localization zone is treated as having a finite width and non-constant pore pressure, albeit with 
a simplified mathematical representation. The dimension of the 2D plane strain problem is reduced to a 1D 
problem resulting in increased computational efficiency and incorporation of small-scale shear-zone physics 
into the boundary conditions. We apply the method to data from a fault injection experiment that has been 
previously studied with modeling. We explore the influence of bulk poroelastic response, bulk diffusivity in 
addition to inelastic dilatancy on fault slip during injection. Dilatancy not only alters drastically the stability 
of fault slip but also the nature of pore pressure evolution on the fault, causing significant deviation from the 
standard square-root-of-time diffusion. More surprisingly, varying the bulk's poroelastic response (by using 
different values of the undrained Poisson's ratio) and bulk hydraulic diffusivity can be as critical in determining 
rupture stability as the inelastic dilatancy.

Plain Language Summary Earthquakes occur on faults deep in the Earth's crust. At this depth, 
faults are surrounded by rock and water that fills up pores and fractures. This water affects how the rock 
responds to earthquakes or slip on faults. Water also plays an important role within the faults since it will 
decrease or increase the frictional resistance by pressurization or depressurization, respectively. A common 
cause of pressurization is by injection of fluid, for example, during carbon sequestration or waste-water 
disposal. Here we develop an efficient method to simulate fault slip and earthquakes in a porous and fluid-filled 
medium. This allows us to understand better the role of water in causing pressure changes that affect the 
earthquake processes, either in the host rock or within the fault. We compare our method to a previously studied 
experiment in which water was injected directly into a fault and slip was measured. In addition, we investigate 
the poroelastic properties of the host rock, which describe how fluids interact with the elastic rock surrounding 
the fault. The poroelastic properties of the host rock have not received much attention in prior studies. They can 
significantly influence if and when an earthquake occurs due to injection.

HEIMISSON ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

A Spectral Boundary-Integral Method for Faults and 
Fractures in a Poroelastic Solid: Simulations of a Rate-and- 
State Fault With Dilatancy, Compaction, and Fluid Injection
Elías Rafn Heimisson1,2  , Shengduo Liu3, Nadia Lapusta2,3  , and John Rudnicki4 

1Swiss Seismological Service, ETH Zurich, Zurich, Switzerland, 2Division of Geological and Planetary Sciences, California 
Institute of Technology, Pasadena, CA, USA, 3Division of Engineering and Applied Science, California Institute of 
Technology, Pasadena, CA, USA, 4Department of Civil and Environmental Engineering and Department of Mechanical 
Engineering, Northwestern University, Evanston, IL, USA

Key Points:
•  We present a novel spectral 

boundary-integral method for friction 
and fracture problems in a 2D 
poroelastic solid

•  We solve for fault slip with 
fully-coupled injection and dilatancy 
on a rate-and-state fault

•  We identify significant influence of 
bulk poroelastic properties and bulk 
diffusivity on fault stability during 
injection

Correspondence to:
E. R. Heimisson,
elias.heimisson@sed.ethz.ch

Citation:
Heimisson, E. R., Liu, S., Lapusta, 
N., & Rudnicki, J. (2022). A spectral 
boundary-integral method for faults 
and fractures in a poroelastic solid: 
Simulations of a rate-and-state fault with 
dilatancy, compaction, and fluid injection. 
Journal of Geophysical Research: Solid 
Earth, 127, e2022JB024185. https://doi.
org/10.1029/2022JB024185

Received 8 FEB 2022
Accepted 13 AUG 2022

10.1029/2022JB024185
RESEARCH ARTICLE

1 of 31

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024185, W
iley O

nline L
ibrary on [18/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-8342-7226
https://orcid.org/0000-0001-6558-0323
https://orcid.org/0000-0002-4258-8506
https://doi.org/10.1029/2022JB024185
https://doi.org/10.1029/2022JB024185
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022JB024185&domain=pdf&date_stamp=2022-08-31


Journal of Geophysical Research: Solid Earth

HEIMISSON ET AL.

10.1029/2022JB024185

2 of 31

been frequently modeled with a straightforward implementation of one-way coupling of pore pressure and fric-
tional strength where pore pressure perturbations are imposed and slip or number of seismic events are computed.

The coupling injection and fault slip is far from trivial, for example, injection into faults may also lead to sustained 
aseismic transients (e.g., Bhattacharya & Viesca, 2019; Dublanchet, 2019; Viesca & Dublanchet, 2019), which 
may trigger microseismicity (Guglielmi et al., 2015; Wynants-Morel et al., 2020). The aseismic slip itself may 
later become seismic depending on the frictional properties of the fault (Larochelle et al., 2021a). A more detailed 
investigation of this problem reveals considerable complexity in pore pressure evolution if heterogeneous perme-
ability structures and poroelasticity are considered (e.g., Yehya et al., 2018).

The poroelastic properties of the crust have lately been receiving more interest, most prominently as a long-ranging 
and fast-acting mechanism in which faults can be stressed due to injection or extraction (Segall & Lu, 2015). 
However, there is also significant literature on the role of poroelasticity in influencing the nucleation or propaga-
tion of seismic and aseismic ruptures (Dunham & Rice, 2008; Heimisson et al., 2019, 2021; Jha & Juanes, 2014; 
Rudnicki & Koutsibelas, 1991). An effect of particular importance in regard to the influence of poroelasticity is 
that, during in-plane sliding, compression and dilation of the host rock induces pore pressure change in the shear 
zone (Heimisson et al., 2019, 2021); this effect is discussed further in Section 1.1. Thus the poroelastic response 
of the bulk, induced by an ongoing rupture, may influence the effective normal stress and hence shear resistance 
to the rupture, creating a feedback loop.  Poroelasticity also influences and introduces a diffusion-dependent 
time-evolving shear stress on the fault plane with significant implications for the stability of sliding (Heimisson 
et al., 2021).

Processes other than poroelasticity may change pore pressure in an active shear zone and affect rupture and 
instability formation on faults. The generation of aseismic slip transients on faults is believed to be related to 
pore fluids. For example, transient SSEs in subduction zones are thought to be related to high pore pressure 
conditions (e.g., Bürgmann,  2018; Liu & Rice,  2007). A primary challenge in explaining the mechanics of 
transient slow slip is to understand why it starts, but does not become an earthquake. One potential mecha-
nism is a geometric restriction, in which the high-pore-pressure region is large enough to cause slip acceler-
ation, for example, due to rate-and-state velocity-weakening friction properties, but too small for that slip to 
become seismic (Liu & Rice, 2005, 2007). Another potential explanation is the change from velocity-weakening 
to velocity-strengthening friction with increasing slip rates (Hawthorne & Rubin, 2013; Leeman et al., 2016; 
Shibazaki & Shimamoto, 2007). Rate-and-state faults with velocity-strengthening friction and additional desta-
bilizing effects can also produce SSEs in models with poroelasticity (Heimisson et al., 2019) and viscoplasticity 
(Tong & Lavier, 2018). Inelastic dilatancy of granular fault gouge (e.g., Marone et al., 1990; Proctor et al., 2020) 
can lead to a reduction in pore pressure and stabilize fault slip. This is a naturally present fluid-related mechanism 
that can explain how slow slip transients do not evolve into seismic events (e.g., Segall & Rice, 1995; Segall 
et  al.,  2010). Modeling of fault slip with inelastic dilatancy can explain many properties of SSEs, including 
their scaling (Dal Zilio et al., 2020). Dilatant behavior of rocks acts at many scales and does not just affect fine 
scale granular gouge, but for example, larger scale brittle rock masses may undergo inelastic deformation (Brace 
et al., 1966). Here we focus on in-elastic dilatancy of gouge and large scale elastic volumetric changes in the bulk.

Multiple mechanisms may act at a time. Recently, numerical simulations have started exploring the simultaneous 
injection and inelastic dilatancy in a diffusive shear zone (Ciardo & Lecampion, 2019; Yang & Dunham, 2021). 
However, these efforts have been limited to a non-diffusive and elastic bulk. Coupling with a poroelastic bulk 
introduces another degree of complexity, where elastic dilation and compression of the bulk generate pore pres-
sure transients. Further complexity is introduced by field observations indicating that permeability of the shear 
zone in a fault core may be very different from the surrounding damage zone and host rock (e.g., Wibberley & 
Shimamoto, 2003). In addition, the shearing of gouge material can dramatically reduce the permeability perpen-
dicular to the shearing direction and thus result in the shear zone having a significantly anisotropic permeability 
(Zhang et al., 1999).

When slip speed becomes high enough in a narrow enough shear layer with small enough permeability, then ther-
mal pressurization of pore fluids due to shear heating may also become important (e.g., Bizzarri & Cocco, 2006; 
Rice,  2006). While such effects may be critical for seismic rupture evolution (e.g., Noda & Lapusta,  2013), 
they may be negligible or at least much less pronounced in the nucleation phases of the seismic cycle (Segall & 
Rice, 2006; Segall et al., 2010), which are primarily the focus of this study. Consequently, we do not account for 
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thermal pressurization, although it can be added to the model and numerical implementation developed here, for 
example, following the approach of Noda and Lapusta (2010).

A number of authors have presented dislocation solutions and boundary integral formulations for poroelasticity 
(e.g., Cheng & Detournay, 1988, 1998; Cheng & Liggett, 1984; Rice & Cleary, 1976; Song & Rudnicki, 2017). 
While these solutions have useful applications to fracture and faulting problems, they generally have not been 
formulated to account for processes where pressure inside the fracture or on the frictional surface may change. 
This limits applicability to a certain class of problems.

Here we present a spectral boundary-integral method (SBIM) and derive novel analytical spectral boundary 
integral solutions appropriate for faulting and induced seismicity problems in a poroelastic bulk where pressure 
inside a thin shear zone could be changing. The SBIM allows us to simulate quasi-dynamic slow and fast slip 
on a rate-and-state fault with dilatancy/compaction and fluid flow in a plane-strain poroelastic medium. We 
take a boundary layer approach where the outer solution, which is the spectral representation of the poroelastic 
bulk, treats the fault as a zero-thickness interface with suitable boundary conditions. However, the inner solution 
considers the fault to be a finite-width shear zone. We consider the frictional properties of the shear zone to be 
determined by their width-averaged properties. The bulk is an isotropic standard quasi-static Biot poroelastic 
solid with a hydraulic diffusivity c. The shear zone has frictional strength described by rate-and-state friction, 
with inelastic state-dependent dilatancy and compaction and anisotropic permeability: the permeability across 
the shear zone is different than the permeability along the shear zone. The inelastic state-dependent dilatancy 
and compaction of the shear zone are implemented using the Segall and Rice  (1995) approach, as explained 
later. We frequently refer to this process only as “dilatancy” for the sake of brevity, and that is also how it is 
commonly referred to in the fault mechanics community. However, we remind the reader that the “dilatancy” 
law also predicts compaction under certain conditions. The pore pressure in the layer is simplified and assumed 
to be bi-linear where the two linear profiles are continuous at the center of the shear zone (as in Heimisson 
et  al.,  2021, see also Section 1.1). The spectral representation uses analytical convolution kernels, which are 
truncated for efficiency similar to Lapusta et al. (2000), but at time scales relevant for the bulk diffusion at the 
specific wavenumber.

Heimisson et al. (2021) presented an analytical and scaling analysis of a dilatant fault in a poroelastic medium 
under long terms steady-state loading, thus exploring the stability of such faults in the context of spontaneous 
event nucleation at steady-sliding conditions. That analysis was achieved by a linearized stability analysis around 
steady state and provided useful first-order insights into governing parameters of fault stability. Here we solve a 
much more general problem numerically, by developing a method that allows us to efficiently simulate the fully 
nonlinear response of such faults. For example, we can simulate fault response due to injection into the fault in 
a fully coupled manner, where we account for anisotropic shear zone diffusion, in-elastic dilatancy, coupling of 
shear zone and bulk, poroelastic response from fault leak-off into the bulk, and pore pressure coupling of slip. To 
date, such a multifaceted description of the fluid fault interaction problem has not been presented in an efficient 
boundary integral framework.

The paper first discusses the general problem setup (Section 1.1). There we touch on the general features of the 
SBIM. In Section 2, a more mathematically rigorous description is presented. In Section 3, we provide the analyt-
ical spectral boundary-integral (SBI) solutions for sliding and opening of an interface in a plane-strain poroelastic 
solid. The numerical approach taken to solve the coupled problem with dilatancy, compaction, and injection in a 
poroelastic solid is described in Section 4, where we first discuss the inversion of the Fourier transform by intro-
ducing a spectral basis and then convolution truncation. We show an application of the SBIM (Section 5), where 
we use constraints from a field experiment (Guglielmi et al., 2015) and a recent numerical study that modeled 
the field experiment data (Larochelle et al., 2021a). Section 6 contains a discussion on the role of poroelasticity, 
and other fluid-based mechanisms, in the dynamics of injection-induced seismic and aseismic slip. Finally the 
Appendix contains details on parameters choices (A), the time-stepping algorithm (B), and numerical method 
validation (C).

1.1. Problem Description

The general problem setup can be divided into three domains. Two are isotropic poroelastic half-spaces, which 
we call the bulk, one in y > ϵ region and the other in y < −ϵ region. The third is a shear zone made from 
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fault gouge, which separates the two half-spaces (Figure 1a). The two poroelastic half-spaces are assumed 
to have the same material properties, which we characterize with the shear modulus G, Skempton's coeffi-
cient B, drained Poisson's ratio ν, undrained Poisson's ratio νu, and hydraulic diffusivity c (e.g., Cheng, 2016; 
Detournay & Cheng, 1995; Rice & Cleary, 1976). In some cases, other poroelastic parameters may be displayed 

Figure 1. Schematic overview of the problems setup and possible pore pressure profiles scenarios in the shear zone. (a) 
Injection occurs in a thin shear zone embedded between two poroelastic halfspaces of the same properties. This injection causes 
fluid migration along the shear zone, across the shear zone, and into the bulk. The evolving pore fluid pressure leads to slip 
across the shear zone by reducing effective normal stress. (b) Pore pressure profiles that can occur during the propagation of 
a single rupture induced by injection. If the pore pressure diffusion is ahead of the rupture, then the shear zone has increased 
pressure compared to background (right-most profile). However, inelastic dilatancy may reduce the pressure. We call this a 
dilatancy dominated pore pressure (left-most profile). Between the two cases of injection and dilatancy dominated regimes, we 
expect at or near the rupture tip the two effects may cancel. However, the compression and dilation of the host rock induced by 
the inhomogeneous slip can significantly change the pore pressures on either side of the shear zone (p + and p −). Fluid mass is 
introduced in practice as an arbitrary source term Q(x, t) (see Section 2.3.1). The isolated pipe serves only visualization purposes.
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for compactness, legibility, and intuition. However, the implementation of the method we present uses the 
aforementioned five.

Between the two poroelastic half-spaces is the third domain that we call the shear zone (−ϵ < y < ϵ). We do not 
consider the shear zone to be specifically a poroelastic material, but rather fluid-filled frictional elasto-plastic 
granular gouge. The elastic behavior of the shear zone is described with various compressibility relationships that 
affect the fluid and solid phase mass balance of the gouge. This is elaborated on in Section 2.3.1 and 2.3.2 as well 
as in Heimisson et al. (2021). Similar description was developed by Segall and Rice (1995). Here we present a 
more complex physical system than Segall and Rice (1995), which includes total normal stress changes and fault 
perpendicular displacements. Thus, a more elaborate description is needed. This includes considering material 
compression under uniaxial normal stress. While defining a uniaxial compressibility is not often done, such 
compressibility has been useful in problems related to stress transfer on faults in elastic and poroelastic medium 
(Cocco & Rice, 2002).

Now we briefly review the most relevant parameters related to the shear zone description; a more complete math-
ematical description is provided in Section 2. The shear zone is a thin layer of half-width ϵ. Here thin indicates 
that ϵ should be much smaller than any significant variation in fields, such as slip or pressure, along the x-axis. 
This assumption is fundamental for the accuracy of the boundary-layer treatment of the shear zone. The proper-
ties of the shear zone or fault gouge are characterized by reference porosity ϕ0, inelastic dilatancy coefficient γ 
(Segall & Rice, 1995), and pore pressure and normal stress dependent void volume compressibilities 𝐴𝐴 𝐴𝐴

𝑝𝑝
𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑛𝑛  . In 
addition, the intact gouge material compressibilities are 𝐴𝐴 𝐴𝐴

𝑝𝑝
𝑔𝑔 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑔𝑔  , and the fluid compressibilities are 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑓𝑓
 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑓𝑓
 , 

where the β-coefficients represent linearized relationships between changes in volume and stress and pressure. 
These relationship can be considered as representing contribution of elastic or reversible processes, for example, 

𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑛𝑛 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑛𝑛  describe the elastic component of the porosity change.

The frictional strength of the shear zone is determined by the reference coefficient of friction f0, the characteristic 
state evolution distance DRS, the constitutive parameter a that scales the direct rate dependence of friction, and 
the constitutive parameter b that scales the state dependence of friction. A similar description of a shear zone 
was developed in Heimisson et al.  (2021), but here we include more physical processes that alter shear zone 
fluid flow. First, we consider that there may be a source of fluid mass in the layer, for example, by injection, 
indicated by Q. Second, we include an anisotropic mobilities κcx and κcy (defined as permeability over dynamic 
fluid viscosity) assuming Darcy flow. In particular, the mobility in the y direction, κcy can be different from the 
mobility in the x direction κcx. Thus, fluids injected into the fault have multiple migration paths, along the shear 
zone, perpendicular to the shear zone, and in both x and y directions in the bulk. Furthermore, an increase in pore 
pressure in the bulk can migrate into the shear zone and also to the bulk on the other side (Figure 1a).

In terms of geological description of fault-zone permeability structures, our setup falls best in the category of a 
localized conduit as identified by Caine et al. (1996). That is a fault without a significant damage zone or fault 
core. Such simple faults are particularly relevant for field-scale fault injection experiments and have been targeted 
in previous experiments (Guglielmi et al., 2015) and will be targeted in future (Ma et al., 2022) experiments. We 
suggest, however, that our problem setup could be reinterpreted and applied to a larger class of problems with 
minor modifications. For example, the shear zone could be interpreted to represent any thin diffusive structure that 
may undergo shear or dilatation. Thus our solutions, in particular the spectral boundary integral solutions, have a 
wider applicability than presented here and could be applied to problems related to damage zones or fault cores.

1.2. Motivation

A key question in induced seismicity is to understand when so-called runaway ruptures happen, that is ruptures 
that propagate well outside a pressurized region. This is a useful focal point to explain some of the general 
dynamics that we expect from the described problem above. When injection into a fault occurs, there are two 
important length scales along the x dimension (Figure  1) that can interact and explain the dynamics of the 
slip. First, how far the pressure front from the injection site has diffused, which we can define as the region of 
significantly elevated pore pressure. Second, how far the rupture tip has propagated, which can be understood 
as the region of significant fault slip. If a fault has relatively low shear stress, that is, its shear stress over initial 
effective normal stress is significantly below its reference friction coefficient, or is well-healed, which may be 
common in injection experiments, the pore pressure front controls how far the rupture tip can move since the 
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frictional resistance is too great outside the pressure front (e.g., Larochelle et al., 2021a). However, if a fault is 
relatively well-stressed, or if the slipping region enters a more well-stressed portion of the fault or a portion of the 
fault with lower friction, then the rupture may become self-sustained and rupture outside the pressure front. Thus 
the rupture may initially be contained by the pressure front, but evolve to become a runaway rupture.

The interplay of the rupture tip and pressure front provides a useful qualitative explanation of the transition from 
a confined to runaway rupture. However, additional complexity, which is related to the pressure profile across the 
fault, plays an important role in determining the if, when or how such a rupture can happen. If a rupture is initiated 
in a shear zone by injection, the pressure profile across the shear zone (i.e., pressure change with y, Figure 1b) 
can be dominated by different mechanisms depending on whether observing the profile at a x coordinate that is 
ahead of the rupture, at the tip or behind the tip (Figure 1b). This is particularly prominent for an in-plane rupture 
direction due to the volumetric straining of the bulk. If the pressurized zone is ahead of the rupture, the shear 
zone central pressure (pc) would be elevated. The pore pressures adjacent to the shear zone (p + and p −) would 
also be elevated due to the leak-off into the bulk. Near the tip region, the influence of dilatancy starts to lower 
the pore  pressure pc, but furthermore volumetric straining of the bulk causes an increase in pore pressure on the 
compressive side (p +) and decrease on the dilating side (p −) due to poroelastic coupling. Finally, behind the tip, 
dilatancy may have further reduced the pressure pc and possibly reversed the sign compared to the background 
equilibrium pressure and caused flow back into the shear zone. We thus suggest that, in order to model rupture 
propagation, earthquake nucleation, and understand runaway ruptures in a fluid-saturated medium due to injec-
tion, we must consider coupling that arises from the interplay of several mechanisms that alter the pore pressure.

2. Governing Equations
This section describes the conservation laws, friction laws, and boundary conditions.

2.1. Poroelastic Bulk

The quasi-static theory of poroelasticity can be described as four coupled partial differential equations writ-
ten in terms of displacements ui and fluid pressure changes p relative to an equilibrium pressure state (e.g., 
Cheng, 2016; Detournay & Cheng, 1995):

𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +
𝐺𝐺

1 − 2𝜈𝜈
𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼𝑖𝑖𝑖 (1)

and

1

𝑀𝑀
𝑝𝑝,𝑡𝑡 − 𝜅𝜅𝑝𝑝,𝑘𝑘𝑘𝑘 = −𝛼𝛼𝛼𝛼𝑘𝑘,𝑘𝑘𝑡𝑡, (2)

where the material parameters are as follows: G: shear modulus, ν: drained Poisson's ratio, α: Biot-Willis param-
eter, M: Biot modulus, and κ is the mobility (the ratio between the permeability and fluid viscosity). In later 
expressions, a different set of poroelastic material parameter may be used for compactness and increased intui-
tion, in particular Skempton's coefficient B and undrained Poisson's ratio νu. The Biot modulus M may not be as 
well known as the others, but it is defined as the change in amount of fluid per unit change in pressure at constant 
volumetric strain. It is inversely proportional to the storage coefficient. The Biot modulus offers a simple and 
useful relationship between mobility and hydraulic diffusivity in the poroelastic medium by c = κM. This rela-
tionship can also be written without M as:

𝑐𝑐 = 𝜅𝜅
2𝐺𝐺𝐺𝐺(1 + 𝜈𝜈)

3𝛼𝛼(1 − 𝛼𝛼𝐺𝐺)(1 − 2𝜈𝜈)
. (3)

Skempton's coefficient B and undrained Poisson's ratio νu can be related to the other aforementioned set of five 
parameters via:

𝐵𝐵 =
3𝑀𝑀𝑀𝑀(1 − 2𝜈𝜈)

2𝐺𝐺(1 + 𝜈𝜈) + 3𝑀𝑀𝑀𝑀2(1 − 2𝜈𝜈)
, (4)
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𝜈𝜈𝑢𝑢 =
2𝐺𝐺𝜈𝜈 +𝑀𝑀𝑀𝑀2(1 − 2𝜈𝜈)

2𝐺𝐺 + 2𝑀𝑀𝑀𝑀2(1 − 2𝜈𝜈)
. (5)

Finally, Skempton's coefficient can then be expressed simply in terms of Poisson's ratios and the Biot-Willis 
parameter:

𝐵𝐵 =
3 (𝜈𝜈𝑢𝑢 − 𝜈𝜈)

𝛼𝛼(1 − 2𝜈𝜈) (1 + 𝜈𝜈𝑢𝑢)
. (6)

In this work, we assume plane strain deformation, in which case the governing equations can be reduced to three. 
Further simplification and decoupling of the governing equations is possible by using the McNamee-Gibson 
displacement functions (McNamee & Gibson,  1960; Verruijt,  1971). In obtaining solutions to Equations  1 
and 2, we follow the strategy explained in the Appendix of Heimisson et al. (2019) using the McNamee-Gibson 
displacement functions but using the boundary conditions listed in the next section.

2.1.1. Boundary Conditions

We apply the following boundary conditions at the interface, that is, the shear zone, and at infinity.

lim
𝑦𝑦→0±

𝑢𝑢+𝑥𝑥 − 𝑢𝑢−𝑥𝑥 = 𝛿𝛿𝑥𝑥, (7)

lim
𝑦𝑦→0±

𝑢𝑢+𝑦𝑦 − 𝑢𝑢−𝑦𝑦 = 𝛿𝛿𝑦𝑦, (8)

lim
𝑦𝑦→±∞

𝑢𝑢±𝑥𝑥 = 0 and 𝑢𝑢±𝑦𝑦 = 0, (9)

lim
𝑦𝑦→±∞

𝑝𝑝± = 0, (10)

lim
𝑦𝑦→0±

𝜎𝜎+
𝑥𝑥𝑦𝑦 − 𝜎𝜎−

𝑥𝑥𝑦𝑦 = 0, (11)

lim
𝑦𝑦→0±

𝜎𝜎+
𝑦𝑦𝑦𝑦 − 𝜎𝜎−

𝑦𝑦𝑦𝑦 = 0, (12)

where we have dropped the index notation and used x and y (as represented in Figure 1a). The first two reflect 
displacement discontinuities, that is slip δx (Mode II) and opening (or layer dilation) δy (Mode I). The third and 
fourth conditions require the fields to decay at infinity. The final two conditions enforce continuity of stresses 
across the interface or the shear zone.

The pore pressure in the shear zone is assumed to be bi-linear (Heimisson et al., 2021). In other words, we param-
eterize the pore pressure as two linear profiles that are fully constrained by the pore pressure at the center pc at 
y = 0 and the pressure at the shear zone boundaries where the poroelastic bulk meets the shear zone, that is, p ± at 
y = ϵ ± (Figure 1). We can explicitly write out the assumed pore pressure profile as:

�(�) =
�
�
(

�+ − ��
)

+ �� if 0 < � < �

�(�) =
�
�
(�� − �−) + �� if − � < � < 0.

 (13)

Equation 13 is a generalization of the leaky interface used in the plane strain dislocation solution of Song and 
Rudnicki (2017). There are two main benefits of using Equation 13 for the pore pressure in the shear zone. First, we 
can fully reduce the dimension of the shear zone in a computational sense, meaning that we only need to simulate 
a 1D problem, although we incorporate 2D physics. Reducing the dimension of a computational domain is also 
achieved with a boundary integral method and we use a boundary integral method to describe the bulk (the outer 
solution). Thus, it is also desirable to extend this dimension reduction to the shear zone physics, which is the inner 
solution of the boundary layer treatment. Second, if the layer is indeed thin, we may expect the across-shear-zone 
pressure profile to evolve to linear profiles since such a profile would satisfy the quasi-static limit of a standard 
diffusion equation. We can thus expect a more general solution, without a dimensional reduction, to evolve to the 
bilinear profile. How fast that evolution occurs would depend on ϵ and κcy and needs more work to quantify. That 
being said, we stress that a rigorous treatment of this problem without dimensional reduction in 2D is a fruitful and 
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important topic for future work. We suggest that our approach is a good starting point for accounting for pressure 
being variable in the shear zone, which is mostly considered to be a constant in other simplified treatments.

Assuming the bi-linear pressure parameterization and equating the fluid mass flux into the shear zone and in the 
bulk, and vice versa, gives rise to a pressure gradient boundary condition for the bulk:

𝑑𝑑𝑑𝑑±

𝑑𝑑𝑑𝑑

|
|
|
|𝑑𝑑=0±

= ±
𝜅𝜅𝑐𝑐𝑑𝑑

𝜅𝜅

(𝑑𝑑± − 𝑑𝑑𝑐𝑐)

𝜖𝜖
, (14)

where κcy is the shear zone mobility in the y direction and κ is the poroelastic bulk mobility related to the bulk 
hydraulic diffusivity by c = Mκ.

We highlight that boundary conditions for the bulk are applied at y = 0 ± but, in the description of the shear zone, 
we treat it as a finite layer with thickness between y = ±ϵ. This is because we take a boundary layer approach 
(similar to Appendix B of Rudnicki & Rice, 2006) where the inner solution, the shear zone, is assumed to have 
a finite thickness. However, the outer solution, the bulk, approximates the layer as having an infinitesimal thick-
ness. Thus the assumption that any variation along the length of the shear zone occurs over a length scale much 
larger than ϵ is implicit. In other words, we always require that ϵk ≪ 1, with k representing the wavenumber 
(inverse of a wavelength) of any field that varies along the x-dimension.

2.2. Frictional Properties

We represent the frictional strength of the layer in an averaged sense (as in Heimisson et al., 2021). We assume 
that the frictional strength of every point in the layer can be represented as follows:

𝜏𝜏(𝑥𝑥𝑥 𝑥𝑥)

𝜎𝜎(𝑥𝑥𝑥 𝑥𝑥) − 𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)
= 𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) for − 𝜖𝜖 𝜖 𝑥𝑥 𝜖 𝜖𝜖𝑥 (15)

where τ(x, t) is the sum of all contributions to the shear stress, both initial background value and slip contri-
butions. We note that the shear stress is assumed to be spatially constant across the layer. σ(x, t) represents 
background initial effective normal stress (normal stress minus the ambient pore pressure) plus the slip-induced 
changes in normal stress and it is also assumed to be spatially constant across the layer. However, we separate 
from σ(x, t) the perturbation in pore pressure p(x, y, t) since, as previously discussed, it cannot be assumed to be 
constant in y. Using Equation 13 and averaging over the layer, we obtain:

𝜏𝜏

(𝑝𝑝𝑐𝑐 − 𝑝𝑝+) log

(
𝜎𝜎−𝑝𝑝−

𝜎𝜎−𝑝𝑝𝑐𝑐

)

+ (𝑝𝑝𝑐𝑐 − 𝑝𝑝−) log

(
𝜎𝜎−𝑝𝑝+

𝜎𝜎−𝑝𝑝𝑐𝑐

)

2 (𝑝𝑝𝑐𝑐 − 𝑝𝑝−) (𝑝𝑝𝑐𝑐 − 𝑝𝑝+)
= ⟨𝑓𝑓 ⟩, (16)

with 〈f〉 representing the frictional coefficient of the layer. We have explored using the equation above for mode-
ling the interface frictional strength, but we find that it renders results similar to a linearized approximation valid 
in the limit of the pore pressure changes being small compared to the background normal stress:

𝜏𝜏 = (𝜎𝜎 − ⟨𝑝𝑝(𝑡𝑡)⟩)⟨𝑓𝑓 ⟩, (17)

where 〈p(t)〉 is the average pressure across the layers and can be computed directly

⟨𝑝𝑝⟩ =
1

2𝜖𝜖 ∫
𝜖𝜖

−𝜖𝜖

𝑝𝑝(𝑦𝑦)𝑑𝑑𝑦𝑦 =
1

2

(

𝑝𝑝𝑐𝑐 +
𝑝𝑝+ + 𝑝𝑝−

2

)

. (18)

Equation 17 further offers a simpler interpretation of the role of the pore pressure in the effective normal stress 
compared to Equation 16, which helps to understand the simulation results.

We interpret the averaged friction coefficient 〈f〉 of the shear zone as being represented by the rate-and-state 
friction law (e.g., Dieterich, 1979; Marone, 1998; Ruina, 1983):

⟨𝑓𝑓⟩ =
1

2𝜖𝜖 ∫
𝜖𝜖

−𝜖𝜖

𝑓𝑓 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑎𝑎arcsinh

[

𝑉𝑉

2𝑉𝑉0

exp

(
𝑓𝑓0 + 𝑏𝑏 log (𝑉𝑉0𝜃𝜃∕𝐷𝐷𝑅𝑅𝑅𝑅 )

𝑎𝑎

)]

𝑥 (19)
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where we use the regularized form of the friction law that is also valid for slip speeds V much smaller than the 
reference slip speed V0 (Ben-Zion & Rice, 1997; Lapusta et al., 2000; Rice & Ben-Zion, 1996). Here a and b are 
constitutive parameters that describe the rate dependence and state dependence of friction, respectively. Further, 
f0 is the reference coefficient and DRS is the characteristic slip distance over which the state evolves. The state 
variable is described by the aging law (Ruina, 1983):

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 1 −

𝑑𝑑𝜃𝜃

𝐷𝐷𝑅𝑅𝑅𝑅

. (20)

We note that here we introduce a difference to the treatment of the frictional properties of the shear zone in 
Heimisson et al. (2021). Here we represent friction using the regularized friction law whereas the non-regularized 
version was discussed by Heimisson et al. (2021). In the linearized analysis treated by Heimisson et al. (2021), 
there is no difference between the two versions.

2.3. Shear Zone

Here we analyze the fluid and solid constituent mass balance of the shear zone gouge. Although we offer a 
complete description of the governing equations, we highlight that more details may be found in Heimisson 
et al. (2021). Note that we build upon the shear zone description of Heimisson et al. (2021) and introduce several 
new processes.

2.3.1. Fluid Mass Balance

Beyond previous work (Heimisson et al., 2021), we introduce two additional physical processes to the fluid mass 
balance of the shear zone. The two processes incorporate an injection or source term and allow for lateral diffu-
sion along the shear zone.

Within the shear zone, the fluid mass balance is:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
+

𝜕𝜕𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
=

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑄𝑄(𝑥𝑥𝑥 𝜕𝜕))𝑥 (21)

where m is the fluid mass content, qy is fluid mass flux perpendicular to the fault (y-axis), qx is the fluid mass flux 
parallel to the fault (x-axis), and Q(x, t) is the cumulative fluid mass injected per unit volume of the shear zone.

We note that m = ρf n, where ρf is fluid density, and we follow Segall and Rice (1995) in assuming that the total 
void volume fraction can be described as n = n e + n pl, that is the sum of elastic and plastic void volume fraction. 
The rate of change in fluid mass fraction is then:

�̇�𝑚 = �̇�𝜌𝑓𝑓 𝑛𝑛 + 𝜌𝜌𝑓𝑓 �̇�𝑛𝑛 (22)

Following Heimisson et al. (2021), we linearize 𝐴𝐴 𝐴𝐴𝐴𝑒𝑒 = 𝜙𝜙0

(

𝛽𝛽
𝑝𝑝
𝐴𝐴 𝐴𝑝𝑝 − 𝛽𝛽𝜎𝜎

𝐴𝐴 𝐴𝜎𝜎
)

 and 𝐴𝐴 𝐴𝐴𝐴𝑓𝑓 = 𝐴𝐴𝑓𝑓𝑓𝑓

(

𝛽𝛽
𝑝𝑝

𝑓𝑓
𝐴𝑝𝑝 + 𝛽𝛽𝜎𝜎

𝑓𝑓
𝐴𝜎𝜎

)

 , where 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑓𝑓
 and 

𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑛𝑛 are fluid and elastic void compressibilities respectively and σ > 0 means increased compression, also know as 

“the compression positive” convention. The compressibilities are mathematically defined in Appendix A. The 
reference compressibilities are defined at the reference void volume fraction ϕ0 and fluid density ρf0. We assume 
the reference void volume fraction is the same as the porosity. Similarly, we assume plastic void fraction is equal 
to the plastic porosity: n pl = ϕ pl. Thus Equation 22 becomes:

�̇�𝑚 = 𝜌𝜌𝑓𝑓𝑓𝑓𝜙𝜙0

(

𝛽𝛽
𝑝𝑝

𝑓𝑓
�̇�𝑝 + 𝛽𝛽𝜎𝜎

𝑓𝑓
�̇�𝜎

)

+ 𝜌𝜌𝑓𝑓𝑓𝑓𝜙𝜙0

(

𝛽𝛽
𝑝𝑝
𝑛𝑛 �̇�𝑝 − 𝛽𝛽𝜎𝜎

𝑛𝑛 �̇�𝜎 + �̇�𝜙𝑝𝑝𝑝𝑝
∕𝜙𝜙0

)

. (23)

Darcy's law provides:

𝑞𝑞𝑥𝑥 = −𝜌𝜌𝑓𝑓𝑓𝑓𝜅𝜅𝑐𝑐𝑥𝑥

𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
, (24)

where κcx is the mobility (permeability over dynamic viscosity) for fluid flux along the x-axis within the shear 
zone, which is assumed to be spatially constant with respect to x.

Combining Equations 21, 23 and 24 and integrating with respect to the y-axis gives:
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2�����0

[

(

��
� + ��

�
)

⟨�̇⟩ +
(

��
� − ��

�
)

�̇ + ⟨�̇⟩��∕�0 )
]

+ �+� − �−� − 2�������
�2⟨�⟩
��2

= 2��̇(�, �), (25)

where the source term Q is assumed constant with respect to y.

Inserting for the fluid mass flux in y direction, given the bi-linear pressure distribution, in the shear zone (Equa-
tions 13 and 14) provides:

⟨�̇⟩ +
��
� − ��

�

��
� + ��

�
�̇ = −

⟨�̇⟩��

�0

(

��
� + ��

�

) +
���

�2�0

(

��
� + ��

�

)

(1
2
(

�+ + �−
)

− ��
)

+ ���

�0

(

��
� + ��

�

)

�2⟨�⟩
��2

+
�̇(�, �)

��
�0

(

��
� + ��

�

) .

 (26)

We have thus derived an equation that relates average pressure, normal stress, dilatancy, along shear zone diffu-
sion, and fluid mass injection. The inelastic change in porosity ϕ pl is taken as

⟨𝜙𝜙⟩
𝑝𝑝𝑝𝑝
= 𝜙𝜙

𝑝𝑝𝑝𝑝

0
− 𝛾𝛾log

(

𝑉𝑉0𝜃𝜃

𝐷𝐷𝑅𝑅𝑅𝑅

)

, (27)

where 𝐴𝐴 𝐴𝐴
𝑝𝑝𝑝𝑝

0
 could reflect an initial value of the inelastic porosity change. However, such a constant could also be 

interpreted as a part of the reference porosity ϕ0. Equation 27 is based on Segall and Rice (1995) and Segall 
et al. (2010), which proposed that the inelastic porosity is a function of the frictional state variable, ϕ pl(θ), based 
on analyzing experimental data by Marone et al. (1990). We assume here that the frictional state variable θ is 
related to the average porosity change in the shear zone. The other approach is to relate the porosity change to the 
instantaneous slip rate ϕ pl(V), but both interpretations of the Marone et al. (1990) data are equivalent when line-
arized around steady-state sliding. Showing the two are the same at steady state is simple. At steady-state slip rate 
Vss, one gets θ = DRS/Vss, so Equation 27 becomes 𝐴𝐴 ⟨𝜙𝜙⟩

𝑝𝑝𝑝𝑝
= 𝜙𝜙

𝑝𝑝𝑝𝑝

0
+ 𝛾𝛾log (𝑉𝑉𝑠𝑠𝑠𝑠∕𝑉𝑉0) , which corresponds to the steady 

state of the slip rate dependent formulation of Segall and Rice (1995). Equation 27 can also be written directly to 
represent the rate of change in plastic porosity (Segall et al., 2010): 𝐴𝐴 ⟨�̇�𝜙⟩

𝑝𝑝𝑝𝑝
= −𝛾𝛾�̇�𝜃∕𝜃𝜃 .

The interpretation of linking inelastic dilatancy and state has gained more observational support recently where 
experiments by Proctor et  al.  (2020) suggest that the state variable and dilatancy are directly linked. Proctor 
et al. (2020) suggest the state could be cast as dilatancy or vice versa as is reflected by Equation 27. It is worth 
noting that although the experiments by Proctor et al. (2020) show agreement with the Segall and Rice (1995) 
dilatancy relationship based on the experimental work of Marone et al. (1990), more complex behavior emerges 
at higher velocity steps. Equation 27 does thus not offer a complete description of how fault gouge dilatancy and 
compaction evolve, an important question that requires future experimental and theoretical study.

Before implementing Equation 26 numerically, we analytically integrate it to obtain:

⟨𝑝𝑝⟩ +
𝛽𝛽𝜎𝜎

𝑓𝑓
− 𝛽𝛽𝜎𝜎

𝑛𝑛

𝛽𝛽
𝑝𝑝

𝑓𝑓
+ 𝛽𝛽

𝑝𝑝
𝑛𝑛

𝜎𝜎 =
1

𝜙𝜙0

(

𝛽𝛽
𝑝𝑝

𝑓𝑓
+ 𝛽𝛽

𝑝𝑝
𝑛𝑛

)

(

𝑄𝑄(𝑥𝑥𝑥 𝑥𝑥)

𝜌𝜌𝑓𝑓𝑓𝑓
− ⟨𝜙𝜙⟩

𝑝𝑝𝑝𝑝
+ ∫

𝑥𝑥

0

𝜅𝜅𝑐𝑐𝑐𝑐

𝜖𝜖2

(
1

2

(

𝑝𝑝+ + 𝑝𝑝−
)

− 𝑝𝑝𝑐𝑐

)

+ 𝜅𝜅𝑐𝑐𝑥𝑥

𝜕𝜕2⟨𝑝𝑝⟩

𝜕𝜕𝑥𝑥2
𝑑𝑑𝑥𝑥′

)

𝑥 (28)

where it is assumed that all fields are 0 at t = 0.

2.3.2. Solid Gouge Constituent Mass Balance

Similar to the fluid mass balance (Equation 21), we can state the conservation of solid mass (gouge material) in 
the shear zone:

𝜕𝜕𝜕𝜕𝑔𝑔

𝜕𝜕𝜕𝜕
+

𝜕𝜕

𝜕𝜕𝜕𝜕
((1 − 𝑛𝑛)𝜌𝜌𝑔𝑔�̇�𝑢𝜕𝜕) +

𝜕𝜕

𝜕𝜕𝜕𝜕
((1 − 𝑛𝑛)𝜌𝜌𝑔𝑔�̇�𝑢𝜕𝜕) = 0, (29)

where ρg is the density of the intact gouge and ux and uy are the x and y components of displacement of the gouge 
in the shear zone.
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The mass of the solid material (gouge) in a control volume within the shear zone is mg = (1 − n)ρg and thus the 
rate of change in solid mass is given by

�̇�𝑚𝑔𝑔 = −𝜌𝜌𝑔𝑔�̇�𝑛 + (1 − 𝑛𝑛)�̇�𝜌𝑔𝑔 . (30)

Following the same linearization procedure and integration across the shear zone as before (see Heimisson 
et al., 2021 for details on procedure and assumptions), we obtain a constitutive relationship for fault perpendic-
ular displacements:

�̇�𝛿𝑦𝑦 = 2𝜖𝜖

(
𝜙𝜙0

1 − 𝜙𝜙0

𝛽𝛽
𝑝𝑝
𝑛𝑛 − 𝛽𝛽

𝑝𝑝
𝑔𝑔

)⎡

⎢

⎢

⎢
⎣

⟨�̇�𝑝⟩ −

(
𝜙𝜙0

1−𝜙𝜙0
𝛽𝛽𝜎𝜎
𝑛𝑛 + 𝛽𝛽𝜎𝜎

𝑔𝑔

)

(
𝜙𝜙0

1−𝜙𝜙0
𝛽𝛽
𝑝𝑝
𝑛𝑛 − 𝛽𝛽

𝑝𝑝
𝑔𝑔

) �̇�𝜎

⎤

⎥

⎥

⎥
⎦

+ 2𝜖𝜖
⟨�̇�𝜙⟩

𝑝𝑝𝑝𝑝

1 − 𝜙𝜙0

. (31)

Assuming that all fields are zero at t = 0, such that no net dilatancy or compaction occurs, then the equation can 
be integrated

𝛿𝛿𝑦𝑦 = 2𝜖𝜖

(
𝜙𝜙0

1 − 𝜙𝜙0

𝛽𝛽
𝑝𝑝
𝑛𝑛 − 𝛽𝛽

𝑝𝑝
𝑔𝑔

)⎡

⎢

⎢

⎢
⎣

⟨𝑝𝑝⟩ −

(
𝜙𝜙0

1−𝜙𝜙0
𝛽𝛽𝜎𝜎
𝑛𝑛 + 𝛽𝛽𝜎𝜎

𝑔𝑔

)

(
𝜙𝜙0

1−𝜙𝜙0
𝛽𝛽
𝑝𝑝
𝑛𝑛 − 𝛽𝛽

𝑝𝑝
𝑔𝑔

) 𝜎𝜎

⎤

⎥

⎥

⎥
⎦

+ 2𝜖𝜖
⟨𝜙𝜙⟩

𝑝𝑝𝑝𝑝

1 − 𝜙𝜙0

. (32)

The additional compressibilities 𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑔𝑔 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑔𝑔  are mathematically defined in Appendix A. In the parameter regime 
studied in this paper (Appendix A), we do not expect the δy mode I displacements to be significant, but we include 
this here for completeness and because this effect is included in the computational code that accompanies this 
paper (Heimisson,  2022). More information on the parameter regime when opening mode contributions can 
significantly influence fault slip is discussed in Heimisson et al. (2021).

3. Solutions for a Poroelastic Bulk Coupled to a Shear Zone
Let us develop solutions in the Fourier-Laplace domain given the boundary conditions in Section  2.1.1. We 
define the joint Fourier-Laplace transform:

̄̂
𝛿𝛿𝑥𝑥(𝑠𝑠𝑠 𝑠𝑠) = ∫

∞

0
∫

∞

−∞

𝛿𝛿𝑥𝑥(𝑡𝑡𝑠 𝑥𝑥)𝑒𝑒
−𝑖𝑖𝑠𝑠𝑥𝑥−𝑠𝑠𝑡𝑡𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡𝑠 (33)

applied here on the slip δx(x, t), or displacement discontinuity across the layer in the x direction, where the bar 
symbol represents the Laplace transform in time and the hat the Fourier transform along the x spatial axis. Some 
symbols may not carry the hat symbol if they are explicitly written out in terms of the wavenumber k.

We follow the procedure outlined by Heimisson et al. (2019) and derive solutions in the Fourier-Laplace domain 
for shear stress, pore pressure, and normal stress change at the slip surface (y → 0 ±). The relationships between 
change in shear stress 𝐴𝐴 ̄̂𝜏𝜏

′ , pore pressure change on either side of the layer 𝐴𝐴 ̄̂𝑝𝑝
± , and change in total normal stress 𝐴𝐴 ̄̂𝜎𝜎𝑦𝑦𝑦𝑦 

in terms of 𝐴𝐴
̄̂
𝛿𝛿𝑥𝑥 , 𝐴𝐴

̄̂
𝛿𝛿𝑦𝑦 , and 𝐴𝐴 ̄̂𝑝𝑝𝑐𝑐 are given by the following equations (Heimisson et al., 2021):

̄̂𝜏𝜏 = −
𝐺𝐺|𝑘𝑘|

̄̂
𝛿𝛿𝑥𝑥

2 (1 − 𝜈𝜈𝑢𝑢)
�̄�𝐻1(𝑠𝑠𝑠 𝑘𝑘) (34)

and

̄̂𝑝𝑝
±

= ∓
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

̄̂
𝛿𝛿𝑥𝑥

3

1 + 𝜈𝜈𝑢𝑢

1 − 𝜈𝜈𝑢𝑢
�̄�𝐻2(𝑠𝑠𝑠 𝑖𝑖) − ̄̂𝑝𝑝𝑐𝑐


 + 1

(

�̄�𝐻2(𝑠𝑠𝑠 𝑖𝑖) − 1
)

+
|𝑖𝑖|𝑖𝑖𝑖𝑖

̄̂
𝛿𝛿𝑦𝑦

3

1 + 𝜈𝜈𝑢𝑢

1 − 𝜈𝜈𝑢𝑢
�̄�𝐻2(𝑠𝑠𝑠 𝑖𝑖)𝑠 (35)

and

̄̂𝜎𝜎𝑦𝑦𝑦𝑦 = ̄̂𝑝𝑝𝑐𝑐
3

2𝐵𝐵 (1 + 𝜈𝜈𝑢𝑢)


 + 1

(

�̄�𝐻1(𝑠𝑠𝑠 𝑠𝑠) − 1
)

−
𝐺𝐺|𝑠𝑠|

̄̂
𝛿𝛿𝑦𝑦

2 (1 − 𝜈𝜈𝑢𝑢)
�̄�𝐻1(𝑠𝑠𝑠 𝑠𝑠)𝑠 (36)
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where

�1(�, �) = 1 −
2 (�� − �)
1 − �

�′�2

�
1 + 

 +
√

1 + �∕�′�2

(

√

1 + �∕�′�2 − 1
)

, (37)

and

�2(�, �) =

√

1 + �∕�′�2 − 1
√

1 + �∕�′�2 + 
. (38)

𝐴𝐴  is a dimensionless group that characterizes the importance of flux across the fault:

 =
𝜅𝜅𝑐𝑐𝑐𝑐

𝜅𝜅

1

|𝑘𝑘|𝜖𝜖
, (39)

and 𝐴𝐴 𝐴𝐴′ is a modified hydraulic diffusivity, where 𝐴𝐴 𝐴𝐴′ = 𝐴𝐴(1 − 2𝜈𝜈𝑢𝑢)(1 − 𝜈𝜈)∕[(1 − 2𝜈𝜈)(1 − 𝜈𝜈𝑢𝑢)] . The difference between 
the two hydraulic diffusivities is thus usually close to 1. In order to obtain the spectral boundary integral solutions, 
these solutions are not sufficient since we need to invert the Laplace transform. We begin this process by defining:

�̄�𝐾1 = �̄�𝐻1 − 1 and �̄�𝐾2 = �̄�𝐻2 − 1. (40)

As shown by Heimisson et al. (2019), 𝐴𝐴 �̄�𝐻1 and 𝐴𝐴 �̄�𝐻2 approach unity in the limit of short time or negligible diffusion, 
which reduces Equations 34–36 to their corresponding undrained limits. 𝐴𝐴 �̄�𝐾1 and 𝐴𝐴 �̄�𝐾2 thus represent the transient 
changes in shear stress and pore pressure on the fault that arise due to pore pressure diffusion.

𝐴𝐴 �̄�𝐻1 and 𝐴𝐴 �̄�𝐻2 are related by �1 = 1 − 2 (�� − �) ∕(1 − �)(1 +  )
(

�′�2∕�
)

�2 . Thus, in the time domain, the inverse 
transform of �1 is closely related to the time integral of the inverse transform of 𝐴𝐴 �̄�𝐻2 . Using the convolution theo-
rem for Laplace transforms, we find that Equations 34 and 35 take the form:

𝜏𝜏 ′ = −
𝐺𝐺|𝑘𝑘|

2 (1 − 𝜈𝜈𝑢𝑢)

(

𝛿𝛿𝑥𝑥 + ∫
𝑡𝑡

0

𝛿𝛿𝑥𝑥
(

𝑡𝑡′
)

𝐾𝐾1

(

𝑡𝑡 − 𝑡𝑡′, 𝑘𝑘
)

𝑑𝑑𝑡𝑡′
)

, (41)

�̂± = ∓ ����
3

1 + ��
1 − ��

(

�̂� + ∫

�

0
�̂�

(

�′
)

�2
(

� − �′, �
)

��′
)

− 
 + 1 ∫

�

0
�̂�

(

�′
)

�2
(

� − �′, �
)

��′

+
|�|��

3
1 + ��
1 − ��

(

�̂� + ∫

�

0
�̂�

(

�′
)

�2
(

� − �′, �
)

��′
)

,
 (42)

and Equation 36 becomes

�̂�𝜎𝑦𝑦𝑦𝑦 =
3

2𝐵𝐵 (1 + 𝜈𝜈𝑢𝑢)


 + 1 ∫

𝑡𝑡

0

�̂�𝑝𝑐𝑐
(

𝑡𝑡′
)

𝐾𝐾1

(

𝑡𝑡 − 𝑡𝑡′, 𝑘𝑘
)

𝑑𝑑𝑡𝑡′ −
𝐺𝐺|𝑘𝑘|

2 (1 − 𝜈𝜈𝑢𝑢)

(

𝛿𝛿𝑦𝑦 + ∫
𝑡𝑡

0

𝛿𝛿𝑦𝑦
(

𝑡𝑡′
)

𝐾𝐾1

(

𝑡𝑡 − 𝑡𝑡′, 𝑘𝑘
)

𝑑𝑑𝑡𝑡′
)

. (43)

We have thus separated the undrained response and the transient diffusional behavior. This behavior is character-
ized by the convolution kernels K1 and K2 that represent the inverse Laplace transforms of 𝐴𝐴 �̄�𝐾1 and 𝐴𝐴 �̄�𝐾2 respectively. 
In other words, 𝐴𝐴 𝐴𝐴1(𝑡𝑡) = −1

{

�̄�𝐴1

}

(𝑡𝑡) and 𝐴𝐴 𝐴𝐴2(𝑡𝑡) = −1
{

�̄�𝐴2

}

(𝑡𝑡) .

The convolution kernels for fault slip problems in poroelastic medium can be constructed numerically and this 
may be the only option for more complex bulk rheology such as accounting for full inertial effects (Heimisson & 
Rinaldi, 2022). The numerical inversion of the Laplace transform is, however, a difficult and numerically inten-
sive task. Here we derived analytical expressions for K1 and K2 through repeated application of the convolution 
theorem to separate 𝐴𝐴 �̄�𝐾1 and 𝐴𝐴 �̄�𝐾2 into factors of known inverse Laplace transforms.

𝐾𝐾1(𝑡𝑡𝑡 𝑡𝑡) = −
2 (𝜈𝜈𝑢𝑢 − 𝜈𝜈)

1 − 𝜈𝜈
𝑐𝑐′𝑡𝑡2

(1 +  )

(

1 +
1

 − 1

[𝑒𝑒(2−1)𝑐𝑐′𝑡𝑡2𝑡𝑡erfc

(√

𝑐𝑐′𝑡𝑡2𝑡𝑡

)

−  + erf

(√

𝑐𝑐′𝑡𝑡2𝑡𝑡

)])

 (44)

𝐾𝐾2(𝑡𝑡𝑡 𝑡𝑡) = −𝑐𝑐′𝑡𝑡2
(1 +  )

[

𝑒𝑒−𝑐𝑐
′𝑡𝑡2𝑡𝑡

√

𝜋𝜋𝑐𝑐′𝑡𝑡2𝑡𝑡

− 𝑒𝑒(2−1)𝑐𝑐′𝑡𝑡2𝑡𝑡erfc

(√

𝑐𝑐′𝑡𝑡2𝑡𝑡

)
]

. (45)
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We note that kernel K2 is singular when t → 0. However, this is an integrable singularity and the convolution 
kernel can be integrated in the sense of taking a Cauchy principal value. K1 and K2 reveal directly that fluid trans-
port in and into the bulk is governed by two characteristic timescales,

𝑡𝑡𝑏𝑏 =
1

𝑐𝑐𝑐𝑐2
 (46)

and

𝑡𝑡𝑓𝑓 =
1

 2𝑐𝑐𝑐𝑐2
=

𝜅𝜅2𝜖𝜖2

𝜅𝜅2
𝑐𝑐 𝑐𝑐

, (47)

where tb can be understood as a traditional length-scale-dependent diffusional time scale, while tf represents a 
scale of flux through and from the shear zone and is independent of the length scale as long as kϵ ≪ 1.

Equations 41–43 offer several other interesting insights into how the bulk couples to the shear zone. We first 
observe that shear stress only depends on the slip (Equation 41). However, pore pressure at the interfaces between 
the shear zone and bulk (Equation 42) has a complex dependence on both slip and opening mode as well as the 
shear-zone center pressure pc. In the limit 𝐴𝐴  → 0 , the pressure in the bulk and shear-zone center decouples. This 
could happen in the limit of κcy → 0 or when the shear zone is impermeable for flux along the y dimension. 𝐴𝐴  
depends on the mobility or permeability contrast of the bulk and shear zone κcy/κ, where bulk mobility κ = c/M 
has been previously explained. But the requirement κcy/κ ≪ 1 is not sufficient for fluids to remain in the shear 
zone because 𝐴𝐴  ∝ 1∕|𝑘𝑘|𝜖𝜖 (Equation 39) and |k|ϵ « 1. Equation 43 shows an interesting coupling to normal stress. 
The relationship between opening mode δy and normal stress change is obvious; however, the coupling of shear 
zone center pressure pc to σyy is a poroelastic response as fluids flow from the shear zone into the bulk. This 
coupling is removed if 𝐴𝐴  → 0 and fluids cannot enter the bulk from the shear zone.

In summary, Equations 41–43 represent analytical solutions for the shear stress, pore pressure (at shear zone 
boundary), and normal stress given a time-history of slip δx, opening δy and/or shear zone center pore pressure 
pc which have been transformed in the wavenumber (Fourier) domain. Alternatively, these expressions represent 
analytical solutions for a single plane wave perturbation in slip δx, δy and/or pc of generic form f(t) exp(ikx), where 
f(t) is some time-dependent function. In Section 4.1, we use this property to construct general solutions for arbi-
trary histories of slip δx, opening δy and/or shear zone center pore pressure pc.

4. Numerical Method
4.1. Fourier Series Representation of Poroelastic Relations

We represent δx, δy, and pc as Fourier series

𝛿𝛿𝑥𝑥(𝑥𝑥𝑥 𝑥𝑥) =

𝑁𝑁∕2−1
∑

𝑛𝑛=−𝑁𝑁∕2

𝐷𝐷𝑥𝑥𝑥𝑛𝑛(𝑥𝑥)𝑒𝑒
𝑖𝑖𝑖𝑖𝑛𝑛𝑥𝑥𝑥 𝑖𝑖𝑛𝑛 =

2𝜋𝜋𝑛𝑛

𝜆𝜆
𝑥 (48)

𝛿𝛿𝑦𝑦(𝑥𝑥𝑥 𝑥𝑥) =

𝑁𝑁∕2−1
∑

𝑛𝑛=−𝑁𝑁∕2

𝐷𝐷𝑦𝑦𝑥𝑛𝑛(𝑥𝑥)𝑒𝑒
𝑖𝑖𝑖𝑖𝑛𝑛𝑥𝑥𝑥 𝑖𝑖𝑛𝑛 =

2𝜋𝜋𝑛𝑛

𝜆𝜆
𝑥 (49)

and

𝑝𝑝𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥) =

𝑁𝑁∕2−1
∑

𝑛𝑛=−𝑁𝑁∕2

𝑃𝑃𝑛𝑛(𝑥𝑥)𝑒𝑒
𝑖𝑖𝑖𝑖𝑛𝑛𝑥𝑥𝑥 𝑖𝑖𝑛𝑛 =

2𝜋𝜋𝑛𝑛

𝜆𝜆
𝑥 (50)

where N is even and equal to the number of points at which δ(x, t) and pc(x, t) are evaluated, and λ represents the 
length of the simulation domain. The Fourier transform is given by

𝛿𝛿𝑥𝑥(𝑘𝑘𝑘 𝑘𝑘) =

𝑁𝑁∕2−1
∑

𝑛𝑛=−𝑁𝑁∕2

2𝜋𝜋𝜋𝜋𝑥𝑥𝑘𝑛𝑛(𝑘𝑘)𝛿𝛿𝜋𝜋 (𝑘𝑘 − 𝑘𝑘𝑛𝑛) 𝑘 (51)
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and corresponding relations exist for 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐 and 𝐴𝐴 𝛿𝛿𝑦𝑦 where δD is the Dirac delta function. Inserting the transformed 
series into Equations 41–43 and performing the trivial inverse Fourier transforms provide
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Testing and validation of this approach reveals that the first term of the pore pressure (Equation 53) is prone to 
developing the Gibbs phenomenon in the presence of steep gradients. This may stem from how the sign of the 
pore pressure depends on kn and not the absolute value of |kn| as for other terms. Oscillations, such as the Gibbs 
phenomena, are somewhat mitigated by the diffusional nature of the pore pressure where short-wavelength oscil-
lations diffuse rapidly. However, a much improved convergence of the series in Equation 35 and nearly complete 
removal of the Gibbs phenomenon can be achieved with a Lanczos sigma factor (Duchon, 1979):
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 (55)

where sinc(x) = sin(πx)/(πx) is the normalized sinc function. It is worth noting that an inverse FFT of the Fourier 
coefficients in Equations 52–55 is an efficient way to compute the stresses and pore pressure at each value of x.

4.1.1. Comparison to Song and Rudnicki (2017)

We partially validate the solutions in the previous section by comparing them to the analytical solution provided 
for a single edge dislocation on a leaky plane by Song and Rudnicki (2017) (Figure 2). In the problem analyzed 
by Song and Rudnicki (2017), 𝐴𝐴 𝐴𝐴𝑥𝑥 = (𝑡𝑡)(−𝑥𝑥) with 𝐴𝐴 (⋅) being the Heaviside step function, δy = 0, pc = 0, in 
which case σyy = 0. We use Equations 52 and 55 after retrieving the Fourier series coefficients using a fast Fourier 
transform (FFT) algorithm of 𝐴𝐴 𝐴𝐴𝑥𝑥 = (𝑡𝑡)(−𝑥𝑥) evaluated on a domain size ranging from x = −50 to x = 50 m. 
Comparison in Figure  2 reveals excellent agreement between the two approaches. Further discussion of the 
method validation is in Appendix C.

4.2. Convolution Kernel Computation and Truncation

Along with time stepping all relevant equations, which is detailed in Appendix B, we update and calculate the 
convolution in Equations 52, 54 and 55. In computing the convolution, we first compute kernel values at lag 
times ti for each wavenumber kn, that is, K1(ti, kn) and K2(ti, kn), where ti are selected to span a time interval from 
ζlmin(tb, tf) to ζumin(tb, tf). In practice we take ζl = 10 −6 and ζu = 20 and tb and tf are the diffusion time-scales of 
the bulk and of the flux through the shear zone given by Equations 46 and 47.

We thus evaluate the convolution kernels between a time that is negligible compared to the diffusional time-scales 
ζlmin(tb, tf), up to a time that is long compared to the diffusional time scales ζumin(tb, tf). Evaluation points ti are 
selected by combining both points at a linearly equally spaced times, and logarithmically equally spaced times. 
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Here we use 1,024 evaluation points, but we find that in some cases, such as the benchmarking against the linear 
stability analysis of Heimisson et al. (2021), much fewer evaluation points are needed.

Since we pre-compute the convolution kernels, we need to determine the values of the Fourier coefficients Dx,n, 
Dy,n, Pn at times t − ti. This is done by storing the Fourier coefficients' values at selected times and then determin-
ing their values at the convolution times ti by linear interpolation.

The criteria for storing a Fourier coefficient value are implemented by setting an integer Nst, which is the maxi-
mum number of time-steps that can be taken without storing the Fourier coefficients. We compute

𝑁𝑁𝑠𝑠𝑠𝑠 = ⌊min
(

1 + min (𝑠𝑠𝑓𝑓 , 𝑠𝑠𝑏𝑏) ∕Δ𝑠𝑠; 1 + min
(

𝑎𝑎𝑎𝑎0∕
(

𝑝𝑝𝑛𝑛𝑐𝑐 − 𝑝𝑝𝑙𝑙𝑠𝑠𝑠𝑠𝑐𝑐

))

∕20;𝑁𝑁max

𝑠𝑠𝑠𝑠

)

⌋, (56)

where 𝐴𝐴 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐  is the vector of pc values when the Fourier coefficients were last stored and 𝐴𝐴 𝐴𝐴max

𝑠𝑠𝑠𝑠
 is a user-determined 

value that makes sure the coefficients are sampled at least every 𝐴𝐴 𝐴𝐴max

𝑠𝑠𝑠𝑠
 time-step. The first criterion in the equation 

makes sure that the minimum diffusion time is resolved in the stored Fourier coefficients. Testing has suggested 
that under-sampling here may not be an issue since the shortest diffusion times correspond to the largest wave-
numbers (shortest wavelengths) and if the simulation is well resolved, then the influence of these wavelengths is 
negligible. The second criterion makes sure that if the pore pressure is changing rapidly, then the information of 
these rapid changes is preserved in the stored coefficients. This is particularly important for injection problems. 
However, for efficiency, we overwrite the value above for Nst if t n − t lst < ζlmin(tb, tf), where t lst is the time when 
the coefficients were last stored, in which case we set 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 = 𝐴𝐴max

𝑠𝑠𝑠𝑠
 . This procedure makes sure that we do not 

store coefficients over time scales too short for any diffusional process to occur, making the seismic phase of the 
simulations much more efficient.

5. Application
Here we show an application of the numerical approach by simulating the Guglielmi et al. (2015) experiment, 
in which fluid was injected into a shallow fault and slip and pressure were monitored. The code (available here 
Heimisson, 2022) uses the spectral boundary integral solution, shear zone constitutive relationship, and a numer-
ical method to simulate slow and fast slip on a rate-and-state fault in a poroelastic medium.

Figure 2. Comparison of our solution based on Equations 52 and 55 and the analytical solution (Equations A1 and 72 
respectively) for a problem in Song and Rudnicki (2017). Colored lines represent the spectral boundary-integral solution 
and overlapping dashed black lines represent the Song and Rudnicki (2017) solution. (a) Shear stress normalized by 
shear modulus G near the dislocation edge (indicated in gray) of unit slip amplitude at three different times, which span 
approximately the undrained, drained limits as well as an intermediate stage. (b) Pore pressure change due to the same edge 
dislocation. Results are shown for c' = 1 m 2/s, B = 0.5, κcy/(κϵ) = 1 m −1, ν = 0.15, νu = 0.45.
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The slip and pressure data were previously analyzed by Larochelle et al. (2021a) by modeling 1D diffusion in a 
plane strain linear elastic bulk with rate-and-state friction. We use their parameter estimates (see also Table A1) 
and their simplified pore pressure history (Figure 3a) as input, but we vary some of other processes and parame-
ters that were not accounted for by Larochelle et al. (2021a), or in most comparable studies, including poroelastic 
properties, bulk diffusivity, and inelastic dilatancy. Specifically, we explore a set of parameters where the bulk 
hydraulic diffusivity is c = 4 · 10 −8 or 4 · 10 −7 m 2/s; the undrained Poisson's ratio is νu = 0.262 or 0.35 (while the 
drained Poisson's ratio ν is 0.24); and the dilatancy coefficient takes values γ = 0, 1.7 · 10 −5, and 1.7 · 10 −4. We 
implement the injection by setting Q(x, t) = Qs(x)Qt(t), where the spatial part Qs(x) is a boxcar function between 
x = ±0.5 and Qt(t) is such that pc matches the simplified pore pressure history (Figure 3a). Further discussion of 
parameters is given in Appendix A.

We follow the setup and initial conditions as implemented by Larochelle et al. (2021a). However, some critical 
differences in the model setup and characterization of fluid flow are worth mentioning. Larochelle et al. (2021a) 
implemented 1D isotropic diffusion along the shear layer, corresponding to the pressure in the shear zone spatially 
constant in y; there is no fluid diffusion or coupling of the flow and deformation in the bulk. Here we assume 
that the pressure measured in the experiment Guglielmi et al. (2015) reflects the shear zone center pressure pc, 
whereas in Larochelle et al. (2021a) this would be a constant value along the y-dimension at x = 0.

We stress that we do not aim either to replicate the simulations and results of Larochelle et al. (2021a) or to model 
the experiments of Guglielmi et al. (2015) explicitly. Our goal is to use these previous results to guide us in find-
ing the relevant part of the parameter space consistent with experimental findings. Then we wish to vary other 
properties that are generally not tested in comparable studies—such as poroelastic properties of the bulk—to 
understand if they significantly affect the slip process and nucleation during fluid injection.

We take the simulation shown in Figure 4a, with γ = 0, νu = 0.262, and c = 4 · 10 −8, as our reference simulation. 
This simulation has most similarity with previous work since the poroelastic response is reduced (with νu = 0.262 
and ν = 0.24 being close in value), the diffusivity of the bulk is small, and no inelastic dilatancy occurs.

Figure 3. Comparison of (a) imposed pressurization at the fault center (a) and (b–d) fluid leakoff per unit length in the 
invariant dimension into the bulk. The numbers in color indicate, at 2,000 s, how much net fluid mass had moved into the 
bulk compared to the injected amount. Substantial lag is observed between fault pressurization and onset of significant leak 
off. We find that different bulk parameter combinations lead to very different amount of leakage. As dilatancy is introduced 
(c, d), the net leakoff decreases due to the dilatancy causing flow back into the shear zone from the bulk.

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024185, W
iley O

nline L
ibrary on [18/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

HEIMISSON ET AL.

10.1029/2022JB024185

17 of 31

5.1. The Importance of Leak-Off Into Bulk

Before investigating the details of the slip in each simulation, we first look at the fluid leakoff in response to 
pressurization.

Without any dilatancy, the reference case (Figure 3b purple) has the least amount of leakoff into the bulk as 
expected since we consider this to be the most similar to elastic simulations with no bulk diffusion. Nevertheless 
about 23% of the injected mass is lost. It is curious to compare the νu = 0.262, c = 4 · 10 −7 m 2/s and νu = 0.35, 
c = 4 · 10 −8 m 2/s (Figure 3b yellow and orange respectively). One would expect that changing the bulk diffusivity 
by a factor of 10 would have much greater influence on leakage than changing the undrained Poisson's ratio, 
yet the leakage is similar. Changing νu from 0.262 to 0.35 increases M by a factor of 2.75, thus, if c is constant, 
then for consistency κ  =  c/M is reduced by about 1/2.75. For reference, κ  =  3.1502  ·  10 −19  m 2/(Pa  s) when 
νu = 0.262, c = 4 · 10 −8 m 2/s and thus the bulk mobility κ is about an order of magnitude larger than the mobility 
κcy = 8.7584  · 10 −20 m 2/(Pa s) across the shear layer. As mentioned previously, and apparent from inspecting 

Figure 4. Simulations of fault fields with time and space for varied bulk diffusivity c and undrained Poisson's ratio νu as 
listed above each panel (and no dilatancy, γ = 0). Each panel shows the average shear zone pressure 〈p〉 and log slip rate 
log10V. x indicates location along the length of the fault, but we note that the simulation domain is 5 times larger (400 m) 
than shown. The black dashed lines are the 0.5 MPa pressure contours, which we take as representative of the pressure front 
distance. The reference simulation with small difference in νu and ν and low c shows highly unstable slip in panel (a) (four 
seismic events). But we observe highly stabilized slip in panel (d), where the undrained Poisson's ratio and bulk diffusivity 
are larger.
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the convolution kernels K1 and K2, the flow into the bulk has two timescales tb = 1/ck 2 and 𝐴𝐴 𝐴𝐴𝑓𝑓 =
(

𝜅𝜅2𝜖𝜖2
)

∕
(

𝜅𝜅2
𝑐𝑐 𝑐𝑐
)

 . 
We thus see that tf is reduced by about 0.13. These considerations explain the observed similar leakoff. Further, 
this highlights the importance of multiple time-scales in the simulated problem and in real faults where multiple 
diffusion times undoubtedly exist.

When simulations without and with dilatancy are compared (Figure  3b vs. Figures  3c and  3d), a consistent 
behavior is revealed but with the leakage universally reduced as γ is increased, although to a different degree for 
different simulations. The reduction in net leakage occurs because the dilatancy reduces pressure and causes flow 
back, or suction, from the bulk into the shear zone.

The following two sections investigate slip behavior as the poroelastic and dilatancy parameters are varied, 
making some of the effects discussed here even more apparent.

5.2. Effects of Poroelasticity and Bulk Diffusivity on Slip Evolution

First, we explore the simplest case, and the one most studied in the literature, where pore pressure change in the 
shear zone is introduced by injection and evolves through diffusion, but does not change due to dilatancy. In 
most cases, this would mean that the pore pressure change is one-way coupled. In other words, the pore pressure 
changes slip by affecting the frictional strength, but the slip does not change the pore pressure (e.g., Bhattacharya 
& Viesca, 2019; Cappa et al., 2019; Larochelle et al., 2021a). However, in the case of poroelastic bulk that we 
are investigating, there is potential for slip to affect the pore fluid pressure even in the absence of dilatancy effect, 
due to the poroelastic coupling. For example, slip induces changes in pore fluid pressure in the bulk, leading to 
variations in p + and p − on the boundary between the bulk and the shear layer, affecting both the average pressure 
in the layer and, eventually pc through diffusion.

The simulations (Figure 4) demonstrate a wide spectrum of slip stability due to variations in two parameters that 
have not been explored much in the literature: bulk diffusivity and undrained Poisson's ratio. First, in the refer-
ence simulations, a smaller undrained Poisson's ratio νu and bulk diffusivity c (panel a) results in highly unstable 
behavior with four seismic ruptures. In contrast, with larger bulk diffusivity c and undrained Poisson's ratio νu 
(panel d) we observe very limited slip in response to the injection. Clearly, the fault is not slipping in a seismically 
unstable manner. In the two intermediate cases, where one value is larger and the other smaller (panels b and c), 
we see somewhat stabilized behavior, with three ruptures instead of four and later onset of seismic slip. Clearly, 
neither parameter alone is controlling the stability characteristics of the fault. We discuss how the undrained 
parameters can play a significant role in the stability in Section 6.

Figure 4 shows that although in all cases the average pore pressure in the shear zone is similar, lower average 
values correlate with increased stability. This is also directly reflected in the leakage reported in Figure 3b.

While Figure 4 offers a good view of the total fault dynamics, it is hard to see the seismic slip rates since dynamic 
events are short-lived, and the components of the average pressure 〈p〉 are hidden. Figure 5 shows the slip 

Figure 5. Variability of slip rate (blue, left axis) and pore pressure (other colors, right axis) at x = 17 m in the reference 
simulation (νu = 0.262, c = 1.7 · 10 −8 m 2/s, Figure 4a).
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rate and various pressures at x = 17 m in the reference simulation (Figure 4a), where the first seismic rupture 
approximately arrests. The simulated slip rates vary by orders of magnitude, from the near-zero initial values 
corresponding to a locked fault, to significant slow slip with sustained slip rates of 10 −7 to 10 −5 m/s, to dynamic 
slip rates of the order of 0.1 m/s. Note that the first seismic event is arresting at this fault location, with the peak 
slip rate of 10 −4 m/s. We observe a striking dependence of p ± on the slip, with the jumps in pressure indicating the 
poroelastic response associated with rapidly spreading rupture. Further, even in the absence of any active ruptur-
ing, seen as spikes in slip rate, there are nevertheless substantial differences in the values of p +, p −, and pc. The 
shear zone half-width is ϵ = 1 mm (Appendix A), and thus the simulation indicates pressure differences around 
1 MPa across this thin shear zone. Figure 5 shows that our choice of using 〈p〉 as the relevant pressure when 
computing the effective normal stress is quite conservative as it averages out significant part of the poroelastically 
induced pressure change, especially during episodes of rapid slip.

5.3. Combined Effects of Poroelasticity and Dilatancy

Here we explore the same parameter combinations, initial conditions, imposed injection, and overall setup as in the 
previous section. However, we now include dilatancy with γ = 1.7 · 10 −5 first (Figure 6) and then γ = 1.7 · 10 −4. The 
latter value was derived by Segall and Rice (1995) from the experiments of Marone et al. (1990). γ = 1.7 · 10 −4 
is typically used in the literature. We explore a smaller value as well, since it reveals an intermediate regime and 
there is no general reason to believe that the dilatancy coefficient could not vary significantly.

Notable in Figure 6 are similar effects of slip stabilization due to increasing c and νu, as in Figure 4. However, 
with even relatively mild dilatancy, the style of slip is very different. We observe no seismic events but slow 
slip migration, with significant stabilization of slip by dilatancy as expected from prior studies (e.g., Dal Zilio 
et  al.,  2020; Segall & Rice,  1995; Segall et  al.,  2010). In all cases, except panel d, the slow slip eventually 
outpaces the pore pressure front as indicated by the dashed 0.5 MPa contour. However, the slip closely tracks the 
contour, which suggests that a different definition of the pore pressure front—that is, with a lower threshold than 
0.5 MPa—may actually lead to slip and pore pressure front being nearly coincident.

Strikingly, the slip in the presence of dilatancy is drastically altering the pore pressure front. The influence of 
dilatancy on the fault pore pressure is most prominent in panel a, where the average pressure at the rupture tip 
is decreased compared to a background value, that is, negative pore pressure change. Furthermore, the pore 
pressure front does not follow the classic square-root-of-time diffusion profile seen in Figures 4 and 6d. Rather, 
the profile is square-root characteristic initially, but once the slip rate is significant, the dilatancy decreases the 
pore pressure and effectively creates suction at the tip, leading to the perturbed pore pressure front. The resulting 
shape of the fault pore pressure contour resembles the outline of a squid's head. As seen in Figure 3, inclusion of 
a non-zero γ reduces the net leak-off into the bulk. Figure 6 demonstrates why, with the dilatancy-induced pore 
pressure change causing mass transfer into the fault from the bulk. Our simulations thus show agreement with 
the theorized flow into the rupture tip from the bulk (Brantut, 2021). Lateral flow from the adjacent shear zone is 
likely also occurring (Ciardo & Lecampion, 2019), but it cannot be the only transfer since that would not affect 
the net leakoff into the bulk. The case of Figure 6d is already very stabilized by the choices of νu and c and thus 
dilatancy does not play a significant stabilizing role. This explains why the blue leakage curve in Figure 3 is not 
much influenced by the dilatancy.

Finally, we show simulations using the value of the dilatancy coefficient γ = 1.7 · 10 −4 as inferred by Segall and 
Rice (1995).

For γ = 1.7 · 10 −4, the slip is further stabilized (Figure 7). There is no seismic rupture and the slow slip front is 
well within the region of the pore pressure increase, except in the case of panel a where the slow slip catches up 
with the pore pressure front toward the end of the simulation. In other words, the rupture is driven by high pore 
pressure and thus grows quasi-statically within the pressure front. Compared to Figure 6, we observe significant 
additional dilatancy-induced changes in pore pressure, with the extent and values of pore pressure in the pres-
surized zone significantly modified and generally reduced. Yet the non-monotonic pore-pressure front features 
are less prominent in Figure 7, with the exception of case (a) where they are similar. This may be somewhat 
counter-intuitive given that the dilatancy coefficient is an order of magnitude larger in Figure 7. However, the 
effect of dilatancy also depends on the slip rates that are able to develop. The case of Figure 7a is still the most 
unstable due to the choices of νu and c, and hence the dilatancy has a more pronounced effect on the shape of 
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the rupture front. Since the dilatancy coefficient is smaller in Figure 6, a larger slip patch can develop before 
the stabilization becomes significant. This slip patch is less stiff or alternatively one might state that it produces 
a higher energy release rate. Thus it is able to drive rupture propagation at a higher slip rate, which ultimately 
results in increased pore pressure response at the front than when the dilatancy coefficient is larger and suppresses 
instability development at an earlier time.

We emphasize that selecting γ = 1.7 · 10 −4 does not generally mean unconditionally stable ruptures. One could 
achieve seismic rupture by choosing a more rate-weakening (and hence instability-promoting) friction properties 
or by altering the injection strategy; for example, injecting at a higher rate may lead to a seismic event (Gori 
et al., 2021).

For further insight, we explore how the friction coefficient and change in inelastic dilatancy evolve in space and 
time for the reference case of poroelastic properties (Figure 8). For cases with inelastic dilatancy, we observe that 

Figure 6. Simulations of fault fields with time and space for varied bulk diffusivity c and undrained Poisson's ratio νu as 
listed above each panel, with dilatancy γ = 1.7 · 10 −5. The panels and simulation setup are the same as in Figure 4 but with 
dilatancy. We observe highly stabilized slip in panel (d), where the undrained Poisson's ratio and the bulk diffusivity are 
larger. Overall, the results are largely consistent with those of Figure 4, where panel (d) shows the most stable behavior, 
panel (a) is the least stable, and parameter combinations in panels (b) and (c) show intermediate stability. However, here all 
simulations show gradual migration of a slow slip front and no seismic event. Thus all simulations are substantially stabilized, 
as expected from introducing dilatancy. We note negative pore pressure change at the slip-front in panel (a) (blue colors), and 
strong overall deviation from the square-root characteristic growth of the pore pressure front.
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change in inelastic dilatancy is occurring nearly uniformly within the ruptured part of the fault (Figures 8b and 8c), 
in particular in the time span of 1,000–1,500 s before the pressure is lowered again. Contrasting Figures 6a and 8b 
shows clearly that the average pore pressure is not uniform and primarily dropping at the rupture tip. Note that the 
pc value is prescribed between x = ±0.5 as described in Figure 3a, but this does not mean that 〈p〉 (which is plot-
ted) is constant, due to bulk leakoff affecting p ±. We can deduce that the inflow back from the bulk and through 
injection maintains pressure within the ruptured region except at the propagating tip. This suggests that the prop-
agation of the rupture tip may depend on how fast fluids can diffuse into the tip region (Brantut, 2021; Ciardo & 
Lecampion, 2019). We suggest that further simulations and analysis that incorporates rate-and-state effects are 
needed to fully understand this phenomenon. The work by Garagash (2021) may offer a useful starting point for 
such analysis, however, our results indicate that the addition of dilatancy and bulk diffusion significantly affect 
the phenomenon. Moreover, such analysis would have to grapple with healing and other effects of rate-and-state 
friction that make the evolution of the friction coefficient qualitatively different from linear slip weakening. 
For example, consider how the friction coefficient varies with slip at the center point for one simulation with 
several seismic events (Figure 9). The initial rupture shows friction behavior analogous to linear slip-weakening 
friction, but subsequent ruptures show behavior that cannot be modeled with the same linear slip-weakening 
friction since the peak frictional strength is clearly strongly history-dependent. In this particular case, we observe 

Figure 7. Simulations of fault fields with time and dilatancy γ = 1.7 · 10 −4. Otherwise the figures and simulation setup is the 
same as in Figure 4. We observe highly stabilized slip in all cases. Unlike the previous two cases the rupture only grows in a 
region of significantly elevated pore pressure.

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024185, W
iley O

nline L
ibrary on [18/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

HEIMISSON ET AL.

10.1029/2022JB024185

22 of 31

non-monotonic peak strength as slip accumulates. This reflects in part differences in time-dependent healing, 
with the first event occurring on a well-healed fault, and then the time between the third and second rupture being 
larger than between the second and first ones (Figure 9b inset). It also depends on how abrupt the increase of slip 
rate is at the rupture front, with sharper increases (as in the third event vs. the second event) corresponding to a 
larger direct effect.

6. Discussion
The application of our method has had two main themes. First, how altering the bulk diffusivity and undrained 
Poisson's ratio influences the fault slip response from fluid injection. Second, how dilatancy affects the fault 
response due to injection. Dilatancy is already understood to be a stabilizing mechanism (Rudnicki & Chen, 1988; 
Segall & Rice, 1995; Segall et al., 2010), although only a limited study of coupled injection and dilatancy has 
been carried out (except Ciardo & Lecampion, 2019; Yang & Dunham, 2021). Thus our general finding, that fault 
slip is stabilized and aseismic slip is promoted when dilatancy is included is not surprising. We have thus chosen 
to contrast this well-known stabilizing mechanism with less explored parameters that we are uniquely positioned 
to investigate with the method described in this paper. Namely we vary parameters c and νu. Indeed the latter has 

Figure 8. Changes in the coefficient of friction and inelastic dilatancy for νu = 0.262 and c = 4 · 10 −8 m 2/s as γ is varied. 
Panel (a) represents the reference simulation without any dilatancy. We see that the largest change in porosity from inelastic 
dilatancy is about 0.004, which is substantially less than the reference value of 0.068.

Figure 9. Changes in (a) friction coefficient and (b) slip rate as a function of slip at the mid-point of the fault (x = 0) with 
νu = 0.262, c = 4.0 · 10 −7 m 2/s, γ = 0 (also shown in Figure 4c). Insets show the corresponding space-time evaluations, with 
the blue line marking the location of the center point, inset scales are the same as in Figures 4 and 8. The observed evolution 
of the friction coefficient suggests significant differences from a simpler linear slip-weakening model, with a clear history 
dependence of the peak frictional strength.
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meaning only for a poroelastic solid. A purely elastic solid, as considered in most studies (with some exceptions, 
e.g., Jha & Juanes, 2014; Torberntsson et al., 2018; Heimisson et al., 2019) has only a single Poisson's ratio.

Our selection of three different γ values that parameterize dilatancy reveals different modes of rupture. First, 
highly unstable response with repeated seismic ruptures of the same part of the fault. Second, slow, quasi-static 
slip migration that propagates at the boundaries and perhaps beyond the pressurized region, depending on its defi-
nition. Finally, quasi-statically growing slip only in regions of high pressure. This can be observed in Figures 4, 
6 and 7, respectively. The Guglielmi et al. (2015) experiment reported primarily aseismic slip and significant 
dilatant behavior. Some micro-earthquakes were reported, but they seemed to occur off the main fault and repre-
sent only a small fraction of the moment released. Thus our findings show, given the experimental constraints 
and information from a previous modeling study (Larochelle et al., 2021a), that inclusion of dilatancy results in 
behavior qualitatively similar to what was reported by Guglielmi et al. (2015). However, further study is needed 
for quantitative matching. We highlight that the method presented predicts fault opening from dilatancy or pres-
surization and thus may provide additional constraints in data application when that is directly measured (Cappa 
et al., 2019).

Our reported influence of bulk diffusivity and undrained Poisson's ratio is more novel. We observe that increas-
ing the bulk diffusivity by an order of magnitude significantly stabilizes the fault in the simulations, even in the 
absence of dilatancy. It is important to emphasize that this result is also contingent on the shear zone mobility, 
which we have not varied. This is due to the time scales of fluid diffusion in the bulk and shear zone not being 
independent as discussed by Heimisson et al. (2021). The bulk diffusivity has an important control on the stability 
of the fault as it controls how rapidly fluids can escape the shear zone. It thus controls the average pressure of the 
shear zone even though we maintain a fixed injection pressure. Our parameter choices (Appendix A) are such that 
we consider a fault initially far from steady-state or, in other words, not critically stressed. Although the changes 
in average pressure in Figures 4, 6 and 7 are subtle, they are sufficient to cause significant stabilization in fault 
behavior. This can be observed by comparing panels b and d, or a and c in Figures 4, 6 and 7.

Bulk diffusivity is often considered to be the same as that of the shear zone or the bulk is simply taken to be 
impermeable. In this study, we have taken what we consider to be small values of c ∼ 10 −8 − 10 −7 m 2/s, yet 
we observe a very significant effect with significant stabilization at higher diffusivity. Granites are more likely 
to fall into the c ∼ 10 −5 − 10 −6 m 2/s and many rocks types are even more diffusive except shales that can have 
c ∼ 10 −7 m 2/s (Cheng, 2016). Further, as seen in Equation 26, the flux into the bulk scales with κcy/ϵ 2. Since we 
expect ϵ, the shear zone half-thickness, to be small, we can expect that flux into the bulk occurs rapidly. Indeed, in 
this study, we set the κcx, along shear zone mobility, to be a factor 10 9 larger than κcy such that the fluid migration 
along the shear zone is significant compared to the flux into the bulk. This highlights that how rapidly the bulk 
can transport fluids is critical for the fault dynamics. As discussed in Heimisson et al. (2021), and can be seen in 
the SBI solutions in this paper, the characteristic time of bulk diffusion is ∼1/(ck 2). Thus the bulk fluid transport 
is highly dependent on the length scale, and idealizations of an impermeable bulk may only be valid at a certain 
length scale.

The dependence on the undrained Poisson's ratio may be surprising, and it may not be clear why having a 
pronounced undrained poroelastic response would result in a greater stabilization. As we discussed in relation 
to Figure 3, changing νu but keeping c fixed requires that κ is reduced. Thus the tf (Equation 47), the timescale 
that fluids can move or flow through the shear zone, is changed but not tb (Equation 46), the time scale of fluid 
migration in the bulk. Thus by changing νu we increase the speed of fluid flow in the shear zone, which could lead 
to more rapid leakoff into the bulk and lower shear zone pressure.

But is this the only influence of changing νu? The analysis of Heimisson et al. (2021) provides some insight. The 
undrained critical wavenumber is

|𝑘𝑘𝑢𝑢𝑢𝑢
𝑐𝑐𝑐𝑐 | ≃

2𝜎𝜎0(𝑏𝑏 − 𝑎𝑎) (1 − 𝜈𝜈𝑢𝑢)

𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

(

1 −
𝑓𝑓0𝛾𝛾

𝛽𝛽𝜎𝜎0(𝑏𝑏 − 𝑎𝑎)
+ (𝜖𝜖)

)

, (57)

and the corresponding drained wavenumber is

|𝑘𝑘𝑑𝑑
𝑐𝑐𝑐𝑐| ≃

2𝜎𝜎0(𝑏𝑏 − 𝑎𝑎)(1 − 𝜈𝜈)

𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅

(

1 −
𝑓𝑓0𝛾𝛾

𝛽𝛽𝜎𝜎0(𝑏𝑏 − 𝑎𝑎)
+ (𝜖𝜖)

)

, (58)
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assuming the shear zone mobility tends to zero. Thus, the ratio of the minimum unstable wavelengths in the 
drained and undrained limits is

𝜆𝜆𝑑𝑑

𝜆𝜆𝑢𝑢𝑢𝑢

=
1 − 𝜈𝜈

1 − 𝜈𝜈𝑢𝑢
, (59)

Thus, at most, this ratio can be two, but more commonly around 1–1.5. In simple terms, it means that a perturba-
tion or a slip patch on the fault of length ΔL may be unstable if the bulk responds in a drained manner. However, 
the patch or perturbation may need to be up to 2ΔL to be unstable if the bulk responds in an undrained manner. 
There are a few things to note about this stabilization. First, the transition from a drained to undrained response 
depends on the characteristic bulk and shear zone diffusion times tb and tf relative to how fast the fault is slipping 
and the slip patch length scale (due to the k 2 dependence of tb). Thus the timing of stabilization by a transition 
from drained to undrained response is nontrivial. Second, the drained and undrained limits are inadequate to 
characterize the stabilization fully. Heimisson et al. (2021) showed that, in an intermediate (neither drained nor 
undrained) regime, the fault could be more stable than in the undrained regime. Finally, since anti-plane sliding 
does not depend on Poisson's ratio, the same kind of stabilization would not occur in Mode III. This may lead to 
interesting directional effects in 3D simulations.

In summary, changing an undrained poroelastic parameter not only influences the fluid flow and the undrained 
elastic response but also the timing when the fault slip can be considered undrained. We suspect that this feedback 
may sometimes lead to surprising and even counter-intuitive stability characteristics and needs careful consider-
ation in future work.

Panels b and c in Figures 4, 6 and 7 consistently show similar rupture propagation and stabilization. This suggests 
that, in a certain sense, that setting νu = 0.35 is approximately equally stabilizing as setting c = 4 · 10 −7 m 2/s 
relative to the respective lower values in the simulation setup. Due to the many complexities mentioned in the 
previous paragraph, we do not expect this to hold generally. However, simulations with combined νu = 0.35 and 
c = 4 · 10 −7 m 2/s are nearly identical regardless of the γ value (panels d in Figures 4, 6 and 7). This observation 
highlights that the bulk effects, through combined diffusion and poroelasticity, can be so stabilizing that dilatancy 
cannot become significant enough to affect the rupture propagation and nucleation.

While we do not aim to precisely match the fault slip observed in the field experiment of Guglielmi et al. (2015), 
it is clear that multiple models would be able to reproduce the stable slip measured in the injection site during 
the experiment. The study of Larochelle et  al.  (2021a) already found multiple potential parameter sets that 
match the observed slip behavior nearly identically, by varying the friction properties and along-fault diffusivity. 
Given  the  significant stabilizing effects of bulk diffusivity, undrained Poisson's ratio, and dilatancy—none of 
which were included in Larochelle et al.  (2021a)—it is clear that many additional models can be created, for 
example, by choosing more unstable fault friction properties and adding one or more of the stabilizing mecha-
nisms discussed in this study. To distinguish between different possible models, we need field experiments with 
multiple measurement locations of pore fluid pressure and slip/deformation.

For example, one distinguishing characteristic that highlights the interaction of poroelastic effects with dilatancy 
is the non-standard, non-monotonic evolution of the pore-pressure front that we observe, as in Figures 6 and 7. 
Dilatancy—and the associated reduction in pore fluid pressure—is not uniform along the slipping fault but rather 
is strongly affected by the slip-rate spatio-temporal distribution. Hence it can create local suction that induces 
pore fluid flow reversals, which in turn would depend on the transport and poroelastic properties. Additional 
measurements away from the injection location would thus help constrain the range of applicable models.

One important observation from our simulations is how a single injection can cause multiple seismic re-ruptures 
of the same part of the fault (Figure 4). With each re-rupture, the lateral extent of the rupture increases and the 
probability of a runaway rupture, which is not confined to the high pore pressure region, increases as well. If 
observed in injection experiment, such re-rupturing pattern may be a precursor for a runaway rupture and thus 
may be important to analyze further. We see that during such repeated rupturing the frictional strength is not well 
explained by the simpler linear slip-weakening friction law (Figure 9) or other friction laws where healing is not 
accounted for. This fact challenges most common analysis strategies applied to injection induced frictional slip 
used today (e.g., Brantut, 2021; Ciardo & Lecampion, 2019; Ciardo & Rinaldi, 2022; Garagash, 2021; Garagash 
& Germanovich, 2012; Sáez et al., 2022; Viesca, 2021) if intended for analyzing repeated ruptures on the same 
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interface. However, the initial rupture may be well explained by linear slip weakening, provided its parameters 
are chosen to account for pre-slip healing (which changes the effective slip-weakening behavior, e.g., the peak 
friction), and those methods would work well to understand, for example, how far the rupture propagates. Note, 
however, that there are alternative formulations of rate-and-state friction, with different state-variable evolu-
tion laws such as the slip law (Ruina, 1983) as well as various composite laws, and the formulation that best 
describes various laboratory experiments is a topic of ongoing research (Bhattacharya et al., 2015, 2022). The 
slip law, in particular, results in non-linear effective slip weakening of friction at the rupture tip (e.g., Ampuero 
& Rubin, 2008). The effect of the alternative rate-and-state formulations on the fault slip due to fluid injection 
can be studied by the approach developed in this work and the code provided (see Data Availability Statement) 
incorporates both aging and slip law.

7. Conclusions
We have presented novel SBI solutions applicable to frictional and fracture mechanics problems in a plane-strain 
linear poroelastic solid. The solutions consider that the interface of two poroelastic half-spaces may undergo mode 
I and II displacement discontinuity as well as pressurization. We have applied the solutions to develop a method 
and code implementation of a rate-and-state fault that has simultaneous poroelastic bulk response, inelastic dila-
tancy, and injection. We apply this code to data from a field experiment, which has been previously analyzed by 
modeling. We explore the role of bulk diffusion and poroelastic properties of the bulk with and without inelastic 
dilatancy of the gouge. We find, surprisingly, that bulk diffusion and poroelastic properties of the bulk, which 
are parameters that are rarely explored, can qualitatively affect rupture stability and propagation. Further, we find 
the stabilization by bulk diffusion and poroelastic properties can be comparable to the well-known stabilizing 
dilatancy mechanism. We find that dilatancy can strongly alter the pore pressure distribution on the fault as slip 
evolves which, if measured, would help constrain hydrological and mechanical properties of the fault and bulk. A 
further numerical and analytical study is needed to fully characterize the different stability regimes that we have 
observed. However, our results show that a rich spectrum of slip behavior can be obtained during injection into a 
fault depending on bulk properties that are frequently left out in previous studies.

Appendix A: Parameter Values
Here we briefly explain how the parameter values, listed in the table below, are set. Parameters G, ν, and all fric-
tion and loading parameters in Table A1 are from Larochelle et al. (2021a). Compressibilities 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑓𝑓
, 𝐴𝐴𝜎𝜎

𝑓𝑓
, 𝐴𝐴

𝑝𝑝
𝑛𝑛 , 𝐴𝐴

𝜎𝜎
𝑛𝑛 , 𝐴𝐴

𝑝𝑝
𝑔𝑔 , 𝐴𝐴

𝜎𝜎
𝑔𝑔  

in addition to ϕ0 and ϵ are selected as in Heimisson et al.  (2021) and listed in Table A1. The compressibili-
ties quantify the change in densities and void volume around a reference state. For example, in Equation 22, 
we use ρf, but we wish to understand how the density changes with pressure and normal stress, so we expand 

the fluid density around a reference state ρf  =  ρf0 and σ  =  σ0. We write 𝐴𝐴 𝐴𝐴𝑓𝑓 = 𝐴𝐴𝑓𝑓0 + 𝐴𝐴𝑓𝑓0

(

𝛽𝛽
𝑝𝑝

𝑓𝑓
𝑝𝑝 + 𝛽𝛽𝜎𝜎

𝑓𝑓
𝜎𝜎

)

 where 
𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑓𝑓
=

1

𝜌𝜌𝑓𝑓0

(
𝜕𝜕𝜌𝜌𝑓𝑓

𝜕𝜕𝑝𝑝

)

|𝜌𝜌𝑓𝑓=𝜌𝜌𝑓𝑓0 ,𝜎𝜎=𝜎𝜎0 and thus represents normalized change in fluid density when pore-fluid pressure is 

changed at the reference state but at fixed normal stress. Similarly 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑓𝑓
=

1

𝜌𝜌𝑓𝑓0

(
𝜕𝜕𝜌𝜌𝑓𝑓

𝜕𝜕𝜎𝜎

)

|𝜌𝜌𝑓𝑓=𝜌𝜌𝑓𝑓0 ,𝑝𝑝=𝑝𝑝0 represents change 
in fluid density from uniaxial normal stress change, but at the fixed equilibrium background pore pressure p0. 
We note that fluid density is changed by normal stress because the normal stress changes the pressure. This can 
be seen in poroelasticity in the so-called Terzaghi's Consolidation Problem (e.g., Cheng, 2016). Thus an alterna-
tive  way here would be to relate pressure change to change in normal stress and work only with 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑓𝑓
 but introduce 

another equation for how 𝐴𝐴 𝐴𝐴𝐴 depends on σ. After linearizing, the two approaches lead to a mathematically iden-
tical model. Through equivalent linearization as for the fluid density, we can obtain the compressibilities of the 

void volume as 𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑛𝑛 =

1

𝜙𝜙0

(
𝜕𝜕𝑛𝑛

𝜕𝜕𝑝𝑝

)

|𝑛𝑛=𝜙𝜙0 ,𝜎𝜎=𝜎𝜎0 and 𝐴𝐴 𝐴𝐴𝜎𝜎
𝑛𝑛 =

1

𝜙𝜙0

(
𝜕𝜕𝑛𝑛

𝜕𝜕𝜎𝜎

)

|𝑛𝑛=𝜙𝜙0 ,𝑝𝑝=𝑝𝑝0 . Again through equivalent linearization, the 

compressibilities of the intact gouge material are 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑓𝑓
=

1

𝜌𝜌𝑔𝑔0

(
𝜕𝜕𝜌𝜌𝑔𝑔

𝜕𝜕𝑝𝑝

)

|𝜌𝜌𝑔𝑔=𝜌𝜌𝑔𝑔0 ,𝑝𝑝=𝑝𝑝0 and 𝐴𝐴 𝐴𝐴𝜎𝜎

𝑓𝑓
=

1

𝜌𝜌𝑔𝑔0

(
𝜕𝜕𝜌𝜌𝑔𝑔

𝜕𝜕𝜎𝜎

)

|𝜌𝜌𝑔𝑔=𝜌𝜌𝑔𝑔0 ,𝜎𝜎=𝜎𝜎0 .
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Symbol Description Value

Bulk and gouge material properties

 G Shear modulus 10 GPa

 B Skempton's coefficient 0.85

 ν Drained Poisson's ratio 0.24

 νu Undrained Poisson's ratio 0.35, 0.262

 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑓𝑓
, 𝐴𝐴𝜎𝜎

𝑓𝑓
 Isotropic and uniaxial fluid compressibility 0.44 · 10 −9 Pa −1, 0.24 · 10 −9 Pa −1,

 𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑛𝑛 , 𝐴𝐴

𝜎𝜎
𝑛𝑛  Isotropic and uniaxial pore volume compressibility 6.0 · 10 −9 Pa −1, 3.3 · 10 −9 Pa −1,

 𝐴𝐴 𝐴𝐴
𝑝𝑝
𝑔𝑔 , 𝐴𝐴

𝜎𝜎
𝑔𝑔  Isotropic and uniaxial solid gouge compressibility 0.020 · 10 −9 Pa −1, 0.011 · 10 −9 Pa −1,

 ϕ0 Reference porosity 0.068

 γ Dilatancy coefficient (Segall & Rice, 1995) 0, 1.7 · 10 −5, 1.7 · 10 −4

 ϵ Shear-zone half thickness 1.0 mm

 c Bulk hydraulic diffusivity 4 · 10 −8, 4 · 10 −7 m 2/s

 κcx Along shear-zone mobility 8.7584 · 10 −11 m 2/(Pa s)

 κcy Across shear-zone mobility 8.7584 · 10 −20 m 2/(Pa s)

Friction and loading parameters

 DRS Characteristic state evolution distance 16.75 µm

 a Direct rate dependence of friction 0.01125

 b State dependence of friction 0.016

 αLD Linker and Dieterich (1992) constant 0.0

 V0 Reference slip rate 10 −6 m/s

 f0 Reference friction 0.55

 τ0 Initial shear stress 2.15 MPa

 σ0 Initial effective normal stress 4 MPa

Table A1 
Parameter Values in the Study

We compute uniaxial compressibilities by multiplying the isotropic compressibilities by a factor of 5/9, which 
is only true for linear elastic material. As the stability analysis of Heimisson et al. (2021) indicated, the uniaxial 
compressibilities become important for much thicker shear zones than we explored here. This is seen in how they 
only show up in correction factors to the stability metrics that scale with layer thickness. Thus, in application to 
problems with thick shear zones, a more careful determination of these compressibilities might be warranted.

Skempton's coefficient B is fixed and set to 0.85. This value is representative of Westerly granite as well as 
certain types of sandstone and other rocks. The undrained Poisson's ratio is, on one hand, set to 0.35 to reflect the 
approximate value of Westerly granite and on the other hand to 0.262 to represent the undrained value of Charcoal 
granite. We note that Charcoal granite has ν = 0.270 and νu = 0.292 (Cheng, 2016). However, we wish to fix ν 
such that we do not have multiple parameters varying each simulation. Thus only the range νu − ν is the same 
as for Charcoal granite albeit the Poisson's ratios are similar in absolute terms. Further, Charcoal granite has a 
substantially lower Skempton's coefficient B = 0.454, but we still use B = 0.85 again to limit the number of vary-
ing parameters. We, therefore, do not recommend using this paper as a reference for poroelastic parameters, but 
rather look at the overview of Detournay and Cheng (1995); Cheng (2016), which we used, and references therein 
for more information on error and methods for measuring. Here we simply want to explore two cases where νu − ν 
are small and large, but at the same time make sure that the ranges reflect real values measured in rocks.

As explained in the main text, the range of the dilatancy coefficient is selected to reflect three different styles of 
ruptures. First we set γ = 0 and γ = 1.7 · 10 −4 as trial values where the latter is the standard value used and was 
identified by Segall and Rice (1995). We observe that the two values would typically render either highly unstable 
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or very stable slip. Thus the value of γ = 1.7 · 10 −5 is used to consider an intermediate regime, and shown to 
produce sustained slow slip migration.

The two mobilities κcx, κcy and the bulk hydraulic diffusivity c are determined by trial and error to approximately 
match the pore pressure evolution in Larochelle et al. (2021a). We highlight that due to the heterogeneous perme-
ability structure, the fact that we treat the pore pressure as non-constant in the shear zone, and other coupling 
mechanisms that alter the pore pressure, we cannot simply select parameters that give exactly the same pore 
pressure evolution as in Larochelle et al. (2021a).

Appendix B: Time-Stepping
Here we describe the time-stepping scheme to simulate slow and fast slip with dilatancy and fluid injection into 
the faults. The scheme builds on the predictor-corrector schemes of Lapusta et al. (2000) and Heimisson (2020). 
However, several significant modifications have been introduced to resolve fluid diffusion. Below we shall describe 
the stages of a single time-step by the algorithm. We also refer the reader to the source code (Heimisson, 2022) 
for a more explicit implementation of the time-stepping scheme.

1.  Initial explicit Euler prediction is made for time t n+1 = t n + Δt for 𝐴𝐴 𝐴𝐴∗𝑥𝑥 , 𝐴𝐴 𝐴𝐴∗𝑦𝑦 , 𝐴𝐴 𝐴𝐴∗𝑐𝑐 , V*, where the asterisk represents 
the prediction of the next time-step.

2.  Fourier coefficients are computed corresponding to the prediction values 𝐴𝐴 𝐴𝐴∗𝑥𝑥 , 𝐴𝐴 𝐴𝐴∗𝑦𝑦 , 𝐴𝐴 𝐴𝐴∗𝑐𝑐 , that is 𝐴𝐴 𝐴𝐴∗
𝑥𝑥𝑥𝑥𝑥 , 𝐴𝐴 𝐴𝐴∗

𝑦𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐴𝐴 ∗
𝑛𝑛  using 

a Fast-Fourier Transform (FFT).
3.  Using Equations 52, 54 and 55 the Fourier coefficients for changes in shear stress, normal stress and boundary 

pore pressure are computed and an inverse FFT is used to sum all Fourier modes.
4.  Prediction for shear stress τ* and effective normal stress (σ − p)* is computed. In the results, we use the 

average pore pressure 〈p〉; however, we note that p could here represent any number of pore pressure values, 
for example, p ± or pc, depending on what assumptions are made about the relevant pore pressure in the shear 
localization region. In our numerical implementation (Heimisson, 2022), the user sets which pore pressure 
to use.

5.  Prediction of the updated state-variable is computed using the analytical integration of the aging law by 
Kaneko et al. (2011) which assumes constant slip speed from t to t + Δt

𝜃𝜃∗ = 𝜃𝜃𝑝𝑝exp

(

−
Δ𝑡𝑡

2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛
+ 𝑉𝑉 ∗

)

)

+
2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛 + 𝑉𝑉 ∗)

(

1 − exp

(

−
Δ𝑡𝑡

2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛
+ 𝑉𝑉 ∗

)

))

, (B1)

 where we have taken the slip speed as the average (V p  +  V*)/2 between the slip speed at time t n and 
t n+1 = t n + Δt. Here we use the superscript  n to represent the fields at the previous time step, that is at time t n.

6.  Via an algebraic manipulation of the rate-and-state friction law Equations 17 and 19 a correction for the slip 
speed is computed

𝑉𝑉 ∗∗
= 2𝑉𝑉0sinh

(
𝜏𝜏∗ − 𝜂𝜂𝑉𝑉 ∗

𝑎𝑎(𝜎𝜎 − 𝑝𝑝)
∗
exp

(

−𝑓𝑓0∕𝑎𝑎 −
𝑏𝑏

𝑎𝑎
log (𝑉𝑉0𝜃𝜃

∗
∕𝐷𝐷𝑅𝑅𝑅𝑅 )

)
)

. (B2)

 However, for locations along the fault where the slip speed exceeds a threshold value (here set to 1 cm/s) the 
previous expression is found to lead to numerical dispersion and the slip speed is obtained by solving the 
following non-linear equation as done by Heimisson (2020):

|
|
|
|
|

𝑉𝑉 ∗∗
− 2𝑉𝑉0sinh

(
𝜏𝜏∗ − 𝜂𝜂𝑉𝑉 ∗

𝑎𝑎(𝜎𝜎 − 𝑝𝑝)
∗
exp

(

−𝑓𝑓0∕𝑎𝑎 −
𝑏𝑏

𝑎𝑎
log (𝑉𝑉0𝜃𝜃

∗
∕𝐷𝐷𝑅𝑅𝑅𝑅 )

)
)
|
|
|
|
|

= 0. (B3)

7.  Using the new slip speed correction V** the state variable is also updated

𝜃𝜃∗∗ = 𝜃𝜃𝑝𝑝exp

(

−
Δ𝑡𝑡

2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛
+ 𝑉𝑉 ∗∗

)

)

+
2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛 + 𝑉𝑉 ∗∗)

(

1 − exp

(

−
Δ𝑡𝑡

2𝐷𝐷𝑅𝑅𝑅𝑅

(𝑉𝑉 𝑛𝑛
+ 𝑉𝑉 ∗∗

)

))

, (B4)

 and from Equation 27 𝐴𝐴 ⟨𝜙𝜙⟩∗∗
𝑝𝑝𝑝𝑝

 is computed using θ**.
8.  Updating pc: for the sake of brevity, we will only refer to the code (Heimisson, 2022), see also data availabil-

ity statement, for a detailed implementation of this time-step, but a summary follows. In Equation 28 (after 
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substituting with Equation 18 for 〈p〉) we approximate the ∂ 2/∂x 2 derivative with second-order finite difference 
approximation. The time-integral is discretized using a trapezoidal rule. Predictions from step 1 and 3 are used 
to compute the various fields at time t n+1 except we solve for 𝐴𝐴 𝐴𝐴∗∗𝑐𝑐  (the prediction of pc for time t n+1) implicitly 
by solving a system of linear equations.

9.  Finally 𝐴𝐴 𝐴𝐴∗∗𝑐𝑐  is used to update 𝐴𝐴 𝐴𝐴∗∗𝑦𝑦  , 〈p〉**, and 𝐴𝐴 𝐴𝐴∗∗𝑥𝑥 = 𝐴𝐴𝑛𝑛𝑥𝑥 + Δ𝑡𝑡 (𝑉𝑉 𝑛𝑛 + 𝑉𝑉 ∗∗) ∕2 .

After the steps above, the algorithm determines if it will proceed to the next time-step or reiterate following these 
rules.

•  A minimum of one iteration is used. If the algorithm finishes the aforementioned steps for the first time at the 
current time then it must iterate again. The algorithm moves back to step 1, but instead of explicit guesses for 
the new time step it uses previous updates. That is 𝐴𝐴 𝐴𝐴∗∗𝑥𝑥 → 𝐴𝐴∗𝑥𝑥 , 𝐴𝐴 𝐴𝐴∗∗𝑦𝑦 → 𝐴𝐴∗𝑦𝑦 , and 𝐴𝐴 𝐴𝐴∗∗𝑐𝑐 → 𝐴𝐴∗𝑐𝑐 .

•  If a minimum one iteration has been done, the algorithm checks for absolute and relative error in the 
estimate of pc. That is if 𝐴𝐴 max (|𝑝𝑝∗∗𝑐𝑐 − 𝑝𝑝∗𝑐𝑐 |) ∕ (𝑎𝑎𝑎𝑎0) > 𝜉𝜉∕10 (where a is the direct effect parameter) or 

𝐴𝐴 ‖𝑝𝑝∗∗𝑐𝑐 − 𝑝𝑝∗𝑐𝑐‖1∕‖𝑝𝑝𝑐𝑐‖1 > 𝜉𝜉∕10 is violated then a new time-step is selected Δt → Δt/2 and the algorithm proceeds 
to step 1 using the following initial predictions 𝐴𝐴 (𝛿𝛿∗∗𝑥𝑥 + 𝛿𝛿𝑛𝑛𝑥𝑥) ∕2 → 𝛿𝛿∗𝑥𝑥 , 𝐴𝐴

(

𝛿𝛿∗∗𝑦𝑦 + 𝛿𝛿𝑛𝑛𝑦𝑦
)

∕2 → 𝛿𝛿∗𝑦𝑦 , and 𝐴𝐴 (𝑝𝑝∗∗𝑐𝑐 + 𝑝𝑝𝑛𝑛𝑐𝑐 ) ∕2 → 𝑝𝑝∗𝑐𝑐 . 
Here ξ is a factor that controls the accuracy of the solution, in simulations shown later this is set to ξ = 1/32, 
see Appendix C for more discussion of ξ.

•  If both a minimum of one iteration has been carried out and the error tolerances are satisfied, the algorithm 
proceeds to a new time step and ** predictions are assigned as field values are time t n+1. Finally, the new initial 
time-step is selected Δt → min(ξV n+1/DRS, 1.1 · Δt) where first we make sure that the state evolution is well 
resolved, by picking ξ sufficiently small. Second, we make sure not to grow the time-step too much if the pore 
pressure evolution requires a smaller time-step than indicated by ξV n+1/DRS.

Appendix C: Method Validation
The SBIM, in addition to the rate-and-state fault slip simulations, couples together several physical processes that 
could not be simulated with another individual code. Further, no analytical solutions are available that also couple 
all these processes. It is, therefore, nearly impossible to benchmark and test all capabilities of the code and imple-
mentation simultaneously. However, here we list to provide an overview of the tests and validation we carried out.

•  As was reported in Figure 2 the SBI solutions for τ′ and p ± were tested against the solutions of (Song & 
Rudnicki, 2017).

•  The analytical inversion of the Laplace transform was in all cases tested by also numerically inverting the 
Laplace transform numerically using the Talbot method (Talbot, 1979)

•  Using p + as the relevant pore pressure when computing the effective normal stress, we reproduced the results 
of (Heimisson et al., 2019), which were done with a different code (Torberntsson et al., 2018). We, for exam-
ple, reproduced the spontaneously occurring instabilities at mildly rate-strengthening friction that give rise to 
slow-slip pulses, which only occur in a limited parameter regime. Our results were consistent with the spatial 
dimension of the instabilities and the pulse propagation speeds as reported by (Heimisson et al., 2019).

•  Using the linearized stability analysis of (Heimisson et al., 2021) we identified the critical wavenumber for 
many different regimes, such as high diffusivity, low diffusivity, intermediate diffusivity as well as thicker 
and thinner shear zones. In the code, a fully non-linear implementation, we induced a critical wavelength 
perturbation, as determined by the linearized analysis, by introducing a small perturbation in the initial state 
around steady-state sliding. We found in all cases that the perturbation in the slip speed oscillated without 
growing or decaying.

The tests and benchmarking above do validate most aspects of the implementation and method we have intro-
duced in this paper. However, none test the injection into the fault and fluid propagation as a result of the injec-
tion. In order to check the robustness of the algorithm in this regard, we set up a problem with injection and 
delayed nucleation with dilatancy. The simulations are run until the slip speed reaches 1 cm/s, which we take as 
the instability time. This setup thus tests how well the pore pressure injection and subsequent diffusion is resolved 
as it promotes instability. We generate a manufactured solution with the error tolerance and state integration 
parameter set to ξ = 1/4,096 (see section Appendix B). Then setting ξ ∈ {1/4, 1/8, 1/16, 1/32, 1/64} and inves-
tigating the L1 norm error of the manufactured solution and the less accurate solutions plotted against the total 
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number of iterations (which scales with the computational time) we see a second-order convergence. Where we 
look at the time of instability, the slip speed profile at the instability time, the pc value at the instability time, and 
the slip profile at that time. ξ = 1/32 roughly correspond to a relative error of 10 −3 in all the fields we looked at, 
but we stress that the magnitude of the relative error depends on the problem and the simulation time. For simula-
tions we favor using ξ = 1/32 and one minimum iteration (see section Appendix B for discussion on iterations). If 
smaller values than ξ = 1/64 are compared to the manufactured solution, the convergence gets more complicated 
but tends to improve to the first order with the iteration number. Using no minimum iteration or two minimum 
iterations also works and gives consistent results. We suggest one minimum iteration is most efficient in terms of 
obtaining a stable convergent solution at the fewest total iterations.

Finally, we note that Figure 4c demonstrates, by chance, that the simulations are well resolved and accurate. A 
careful inspection of the figures shows that the last event is not one event but two events nucleating at exactly 
the same time around x ≈ ±30 m and then coalescing. While such a high degree of symmetry is not physically 
realistic, it is a strong indication of well-resolved simulations in time and space, especially when it occurs not at 
the first simulated event. The same phenomenon also occurs in Figure 4b, but it is not as clear.

Data Availability Statement
No original data is presented in this study. The data used in regard to application to the Guglielmi et al. (2015) 
field experiment was archived by Larochelle et al. (2021b): CaltechDATA repository (https://data.caltech.edu/
records/1891). The software implementation of the method described in this paper is available here https://doi.
org/10.5281/zenodo.6010352 (see Heimisson, 2022).
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