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Reservoir operations for gas extraction, fluid disposal, carbon dioxide storage, or geo-
thermal energy production are capable of inducing seismicity. Modeling tools exist for
seismicity forecasting using operational data, but the computational costs and uncer-
tainty quantification (UQ) pose challenges. We address this issue in the context of seis-
micity induced by gas production from the Groningen gas field using an integrated
modeling framework, which combines reservoir modeling, geomechanical modeling,
and stress-based earthquake forecasting. The framework is computationally efficient
thanks to a 2D finite-element reservoir model, which assumes vertical flow equilibrium,
and the use of semianalytical solutions to calculate poroelastic stress changes and pre-
dict seismicity rate. The earthquake nucleation model is based on rate-and-state friction
and allows for an initial strength excess so that the faults are not assumed initially criti-
cally stressed. We estimate uncertainties in the predicted number of earthquakes and
magnitudes. To reduce the computational costs, we assume that the stress model is true,
but our UQ algorithm is general enough that the uncertainties in reservoir and stress
models could be incorporated. We explore how the selection of either a Poisson or a
Gaussian likelihood influences the forecast. We also use a synthetic catalog to estimate
the improved forecasting performance that would have resulted from a better seismic-
ity detection threshold. Finally, we use tapered and nontapered Gutenberg–Richter dis-
tributions to evaluate the most probable maximum magnitude over time and account
for uncertainties in its estimation. Although we did not formally account for uncertain-
ties in the stress model, we tested several alternative stress models, and found
negligible impact on the predicted temporal evolution of seismicity and forecast uncer-
tainties. Our study shows that the proposed approach yields realistic estimates of the
uncertainties of temporal seismicity and is applicable for operational forecasting or
induced seismicity monitoring. It can also be used in probabilistic traffic light systems.

Introduction
Stress changes in the earth’s lithosphere resulting from activ-
ities such as oil and gas extraction or geothermal energy pro-
duction are capable of triggering or inducing seismicity
(Ellsworth, 2013). Much progress has been made recently in
the development of a physics-based and computationally effi-
cient model that maps the relation between fluid injection (or
extraction) to stress changes and seismicity (Bourne et al.,
2014; Bourne and Oates, 2017; Dempsey and Suckale, 2017,
2023; Langenbruch et al., 2018; Candela et al., 2019; Zhai
et al., 2019; Dahm and Hainzl, 2022; Kühn et al., 2022;
Meyer et al., 2022; Smith et al., 2022; Kim and Avouac,
2023). To create these models, it is necessary to combine a res-
ervoir model, which describes pore pressure diffusion in the

subsurface, a geomechanical model, which describes the
induced strain and stress, and a seismicity model, which relates
the seismicity to stress changes. Such models predict the rate of
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earthquakes with magnitude above some threshold in space
and time.

In reality, the seismicity rate is not observable. The quantity
that we can observe is an earthquake catalog, which can be seen
as a stochastic realization of the predicted seismicity rate. As a
result, the uncertainty in the expected number of earthquakes
stems from the epistemic uncertainty of the seismicity rate pre-
dicted by the model and from the aleatoric uncertainty due to
the realization of the stochastic process. Because of the multiple
model layers and the computational cost, optimizing model
parameters and quantifying the uncertainties are challenging
tasks; however, it is critical that uncertainties be assessed so
that the modeling can be used to help plan operations or guide
decisions during operations, for example, through a traffic light
systems (Baisch et al., 2019; Verdon and Bommer, 2021).

Here, we seek to quantify the uncertainty associated with
the predicted number of earthquakes and the maximum mag-
nitude arising from both the epistemic and aleatoric terms.
Different approaches have been used in the previous studies.
For example, Candela, Pluymaekers, et al. (2022) used an
ensemble of stress and seismicity models to estimate epistemic
uncertainties but did not consider aleatoric uncertainties. A
number of studies have used Bayesian methods to estimate epi-
stemic uncertainties (Bourne et al., 2018; Candela, Goncalves
Machado, et al., 2022). Some studies (Candela, Goncalves
Machado, et al., 2022) discuss epistemic and aleatoric sources
of uncertainties but do not provide a method to estimate quan-
titatively the uncertainty, and the associated confidence level
on the predicted number of earthquakes resulting from both
the sources. Regarding the prediction of magnitudes, Bourne
and Oates (2020) and Zöller and Hainzl (2023) considered
the epistemic uncertainty associated with the parametrization
of the frequency–magnitude distribution but did not consider
the uncertainty of their seismicity model. Dempsey and
Suckale (2023) did not consider the uncertainties of the param-
eters of the magnitude–frequency distribution as well as the
parameters in their source model. A method to account for
both aleatoric and epistemic sources of uncertainty is missing
in the earthquake forecasting literature.

Another point of discussion in the literature regards the
choice of the likelihood function that should be used to the
merit of a seismicity forecast. Because earthquake catalogs can
be considered as the superposition of independent events and
events triggered by the previous events, one might consider
using either a Poisson (Ogata, 1988; Bourne and Oates, 2017;
Dempsey and Suckale, 2017) or a Gaussian (Heimisson et al.,
2022; Smith et al., 2022; Dempsey and Suckale, 2023) likeli-
hood. The first one is appropriate in principle if the observed
catalog contains a negligible proportion of aftershocks,
whereas the second is more relevant in the case of a significant
proportion of aftershocks.

We therefore propose an algorithm to account for both
aleatoric and epistemic uncertainty that is independent of

the stress and seismicity model, and can be used with different
likelihood functions. We discuss and quantify these different
sources of uncertainty, and propose a general method to deter-
mine the confidence intervals on the earthquake number fore-
cast. Although our focus is on estimating earthquake numbers,
we also describe how our method can be used to estimate
probabilities of observing earthquakes of a certain magnitude
in a given time window. This requires a model describing
the frequency–magnitude distribution of earthquakes and
the associated uncertainty (Zoeller and Holschneider, 2016;
Shcherbakov et al., 2019).

We use the novel prior-free methodology in Bajgiran et al.
(2021) for uncertainty quantification (UQ) together with
the Broyden–Fletcher–Goldfarb–Shamno (BFGS) method
(Martins and Ning, 2021) for optimizing likelihood functions.
Unlike the traditional Bayesian methods, this approach allows
us to estimate uncertainties that do not depend on the choice
of a prior probability distribution of the model parameters.
We apply this approach to the Groningen gas field in the
Netherlands, where production from the largest onshore gas
field in Western Europe has induced significant and well-doc-
umented induced seismicity (Bourne et al., 2014; Dost et al.,
2017; Spetzler and Dost, 2017). This case study is particularly
suitable for testing the methodology due to the available high-
quality information on reservoir characteristics and operations
(Jager and Visser, 2017), as well as the well-documented seis-
micity (Dost et al., 2017; Spetzler and Dost, 2017; Smith et al.,
2020). Our modeling framework integrates a reservoir model,
which describes the diffusion of pore pressure in the subsur-
face, a geomechanical model, which describes the induced
strain and stress changes both within and outside the reservoir,
and a seismicity model, that relates the seismicity rate to the
stress changes (Heimisson et al., 2022; Meyer et al., 2022;
Smith et al., 2022). The reservoir and geomechanical models
were calibrated using pressure well data and surface subsidence
measurements (Fig. 1a).

The modeling workflow calculates the seismicity rate in
both time and space. The observable seismicity catalog is con-
sidered as a stochastic realization of the forecasted seismicity
rate. In this study, we differentiate between epistemic sources
of uncertainty, which arise from uncertainties in the model
parameters, and aleatoric sources of uncertainty, which stem
from the stochastic nature of the seismicity process. In prin-
ciple, both the reservoir and the geomechanical models con-
tribute to the epistemic source of uncertainties, because they
jointly determine the stress model used to drive seismicity
(Candela, Goncalves Machado, et al., 2022; Meyer et al., 2022).
However, we consider here the stress model to be true, because
it simplifies the presentation of the method and speeds up the
calculation time allowing for the relatively wide range of tests
in this study. However, we do present results obtained with
different stress forecasts. Integrating these epistemic uncertain-
ties is in principle straightforward but computationally costly.
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A step in that direction is presented by Candela, Pluymaekers,
et al. (2022), who inverted jointly the parameters of the earth-
quake nucleation model and the Poisson coefficient associated
with the geomechanical model. A full account of epistemic
uncertainties would require in principle to include uncertain-
ties on all the parameters of the reservoir model and the
geomechanical model, most importantly the reservoir com-
pressibility derived from subsidence measurements.

This article is organized as follows: the Methods section will
describe the data and modeling framework used in the study.
This section will also introduce two alternative likelihood func-
tions, Gaussian and Poisson, to quantify the fit of the model to
the observed number of earthquakes. The algorithm to quan-
tify uncertainties and estimate earthquake magnitude probabil-
ities will also be described. In the Results and Discussion
section, we will apply and test the proposed UQ method to
the forecast of the number of induced earthquakes at
Groningen. The performance of the Poisson and Gaussian like-
lihood functions will be compared and earthquake magnitude
probabilities will be estimated. Using a synthetic catalog, we
will assess how much better our seismicity forecasting perfor-
mance could have been if we had a better seismic network. This
analysis can contribute to constraining the cost and benefit bal-
ance for investments in improved monitoring strategies.
Finally, we will conclude the article by summarizing our find-
ings and discussing their implications for seismicity forecast-
ing, monitoring, and hazard assessment.

Methods
In this section, we first introduce our integrated modeling
approach for seismicity forecasting. Second, we define the like-
lihood functions used in this article. Then, we discuss our algo-
rithm for UQ. Finally, we present a method for estimating the

maximum moment magnitude, which leverages the techniques
developed in this study.

Integrated modeling framework and seismicity
observations
We use a framework that combines reservoir and geomechan-
ical modeling to predict seismicity rates in time and space. The
reservoir model (Meyer et al., 2022) and geomechanical model
(Smith et al., 2022) allow us to calculate stress changes within
and around the reservoir, using data on well extraction rates
and pressure. Details on the calculation of the spatial stress
distribution are available in Appendix A1, available in the sup-
plemental material to this article. The Coulomb stress can be
calculated based on some a priori assumptions on the fault
geometry or for the “optimal” orientation yielding the maxi-
mum Coulomb stress change. We consider optimally oriented
faults, because both options yield very similar seismicity fore-
casts (Smith et al., 2022). The hypocentral depth distribution
shows a peak right above the reservoir top in the anhydrite
caprock (Smith et al., 2020). To reduce the computational cost,
following Smith et al. (2022), we assume a nominal depth of
10 m above the reservoir top. We show in Appendix A2,

Figure 1. The Groningen field and geomechanical model results.
(a) Cumulative vertical displacement since the onset of gas
production as of 2019. Black rectangles denote the locations of
the wells. (b) Maximum Coulomb stress change at a nominal
elevation of 10 m since the onset of gas production and epi-
centers of M ≥ 1:5 earthquakes (circles) as of 2021. (c) Time
evolution of the spatially averaged maximum Coulomb stress
change, and the cumulative number of events with a magnitude
greater or equal to 1.5. The color version of this figure is available
only in the electronic edition.
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available in the supplemental material to this article, results
obtained with different stress models, including the possibility
of the earthquakes nucleating within the reservoir as assumed
in most studies (Bourne and Oates, 2017; Dempsey and
Suckale, 2017, 2023; Candela et al., 2019). All the model tested
yield very similar temporal forecast, but they predict different
spatial distributions. Throughout this paper, we use the
stress model that gives the best fit to the spatial distributions
of earthquakes, but the results presented here are independent
of that particular choice (See Appendix 2 for other stress
models). The reservoir is represented by cuboids with a
vertical extent corresponding to the reservoir thickness and
a 500 m × 500 m horizontal extent. The cuboids were designed
to match as closely as possible the 3D geometry of the reservoir
(Burkitov et al., 2016; Smith et al., 2022). Using the Coulomb
stress history, a seismicity model is then used that can calculate
the seismicity rate in time and space.

We use the seismicity catalog from the Royal Dutch
Meteorological Survey (KNMI; see Data and Resources) to assess
the model prediction. See Appendix A3, available in the supple-
mental material to this article, for more details on the seismicity
data. Initially, there were only a few seismic stations around
Groningen, but the observation of induced seismicity has led
to the deployment of a denser network, resulting in an improve-
ment of the magnitude of completeness of the catalog from about
Mc 1.5 in the early 90s to about 0.5 by 2014 (Dost et al., 2017;
Smith et al., 2022). For this study, unless specified otherwise, we
use the Mw ≥ 1:5 events from the seismicity catalog of KNMI
from the year 1990 to the year 2021. Figure 1b shows the spatial
distribution of the change of maximum Coulomb stress (i.e., the
maximum value for all possible fault orientations) as of 2021.
The seismicity is observed in the zones of higher Coulomb stress
changes. However, the consistency between the time evolution of
the spatially averaged maximum Coulomb stress changes, and
the observed seismicity is not obvious at first glance (Fig. 1c).
Despite extraction rates ramping up in the late 60s, causing rapid
and measurable subsidence and hence an early increase of
Coulomb stress, the seismicity only ramped up in the 1990s
(Fig. 1c). The seismicity rate exhibited an accelerating increase
initially, despite a relatively steady annual extraction rate.
After the production rate was reduced by about 50% following
theMw 3.6 Huizinge earthquake in 2012 (Smith et al., 2022), the
seismicity rate decreased gradually within a few years.

The lag between the onset of seismicity and the Coulomb
stress change history can be interpreted as an indication that
the medium around the reservoir was initially not critically
stressed (Bourne and Oates, 2017). This interpretation is com-
patible with the Groningen area being tectonically quiet since
the early Cretaceous (Jager and Visser, 2017).

Alternatively, the lag could result from the time-dependent
earthquake nucleation process (Dieterich, 1994; Candela et al.,
2019). Because both the explanations may have merit, we use
the threshold rate-and-state (RS) model (Heimisson et al.,

2022), which includes both the effects. The noninstantaneous
nucleation process is represented using the RS friction formal-
ism (Dieterich, 1994) but relaxing the assumption of faults
being critically stressed. Heimisson et al. (2022) showed that,
for a population of faults below steady-state (initially
“relaxed”), the rate of seismicity R�x1,x2,t� (the rate of earth-
quakes per unit time and area) depends on the spatial stress
history ΔS�x1,x2,t� according to

R�x1,x2,t�
r

� f 1�x1,x2,t�
f 2�x1,x2,t�

t> tb,

R�x1,x2,t�
r

� 0 t< tb, �1�

with

f 1�x1,x2,t� � exp

�
ΔS�x1,x2,t� − ΔSc

Aσ0

�
,

f 2�x1,x2,t� �
1
ta

Z
t

tb

f 1�x1,x2,t′�dt′ � 1, �2�

in which x1 and x2 are the positions in the east–west and
north–south directions, r is the background seismicity rate,
and Aσ0 is a characteristic frictional-stress parameter with
A being a constitutive parameter related to the direct effect
of RS. ta is the characteristic time of the nucleation process.
ΔSc is the threshold Coulomb stress, analog to the strength
excess in the Coulomb failure model (i.e., the Coulomb stress
change needed to initiate fault slip). tb is a parameter that
varies in space and defines the time when at position
(x1,x2) the stress (ΔS�x1,x2,t�) reaches ΔSc. This parameter
is introduced to simplify the expression, but it can be elimi-
nated from equation (1). Equation (1) is a discontinuous func-
tion that would make parameter inference challenging. To
overcome this issue, we approximated equation (1) with a con-
tinuous function. The details are described in Appendix A4,
available in the supplemental material to this article.

The vector of model parameters is hereafter defined as

u � � r ta Aσ0 ΔSc � ∈ R4�: �3�

The vector of seismicity observation yMc
that depends on

the cutoff magnitude (Mc) is defined by

y � � y1 y2 … yT � ∈ RT , �4�

in which yj is the total number of earthquakes in jth time bin,

and T is the number of time bins. Finally, the vector of the
modeled seismicity rate, which comes from the discretized
version of equation (1), is

h�u;ΔS�� �h1�u;ΔS1� h2�u;ΔS2� … hT�u;ΔST��∈RT , �5�

in which hj�u;ΔSj� is the predicted rate of events in the jth

time bin. ΔS ∈ RDx1
×Dx2

×T is the discretized stress distribution
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in time and space with Dx1 and Dx2 as the number of elements

in the x1 and x2 direction and T as the number of time bins.

ΔSj ∈ RDx1
×Dx2

×j is the history of stress distribution up to jth

time bin. For details on how to discretize equation (1) and find
h�u,ΔS�, see Appendix A4, available in the supplemental
material to this article.

In this article, we use yearly time bins: the average stress in a
year at each grid point and the cumulative number of events in
each year as the observed seismicity. Because the relationship
between the stress variations and the rate of seismicity is non-
linear, one should in principle take into account subannual
variations, however, to limit the computational cost we neglect
these variations. In addition, Acosta et al. (2023) show that the
impact of seasonal variations of stress on the predicted annual
earthquake rate is negligible. Taking these variations into
account can, however, help tighten the constraints on the seis-
micity model parameters as we show in Appendix A5, available
in the supplemental material to this article, using a simple
example.

Likelihood functions
In this section, we introduce likelihood functions that are used in
this article and discuss their implication in induced seismicity
forecasting. We only use temporal-likelihood functions, because
we have assumed that the stress model is true, and model
parameters are uniform. With these assumptions, equation (1)
is only dependent on the space through the spatial distribution
of ΔS (assumed to be true). Using a spatiotemporal likelihood
would be useful if we were testing different stress models, as they
predict different spatial distributions of seismicity as we show in
Appendix A2, available in the supplemental material to this
article. The UQ algorithm presented in the next section is gen-
eral and does not assume any stress, or seismicity model, and
can be used both for temporal and spatial likelihoods.

It is common practice to consider that earthquakes can be
triggered either by the previous earthquakes or by other proc-
esses such as tectonic loading or stress changes due to subsur-
face reservoir operations. The most adequate likelihood
function depends on the proportion of earthquakes triggered
by other earthquakes in the observed seismicity catalog. If the
proportion is very small, the seismicity is generally well
described by a nonhomogenous Poisson process, meaning that
the events are independent but triggered at a rate that can vary
in time depending on the loading rate (Ogata, 1988). If the
proportion of events triggered by the previous earthquakes
is large, then the nonhomogeneous Poisson model is less
appropriate. In the context of faults governed by RS friction,
coseismic stress changes result in earthquake clusters and after-
shock sequences, but the total number of events is unchanged
over a time scale much longer than the characteristic nuclea-
tion time (Heimisson and Segall, 2018). In that case, if earth-
quakes are binned over a timestep that is large compared to the
typical duration of aftershock sequences, it is probably more

adequate to assume that the number of events per time bin
results from a Gaussian process (Heimisson et al., 2022).

In the case of seismicity induced at Groningen, Trampert
et al. (2022) have found that less than 7% of the Mw > 0:5
earthquakes are triggered by other earthquakes. Another study
suggests possibly as much as 27% of Mw > 1:3 events being
aftershocks. In any case, an inspection of the catalog shows that
aftershock sequences have probably a short duration (smaller
than a year; Post et al., 2021). The clustering effect due to
earthquake interactions is therefore probably smoothed out
when only yearly bins are considered, as is the case when using
the Gaussian log likelihood (GLL). However, it could be a
source of bias when the Poisson log likelihood (PLL) is used.

In the continuous-time form, the nonhomogeneous PLL
can be written (Dempsey and Suckale, 2017) as

PLL�yju;ΔS� �
XN
l�1

log�λ�u; τ l�� −
Z

τN

0
λ�u; τ′�dτ′, �6�

in which λ�u; τ� is the spatially summed seismicity rate con-
tinuously predicted by the model in time (τ), and τl is the time
when the lth event is observed. N is the total number of
observed events. The PLL is discretized as

PLL�yju;ΔS� ≃ hy, log�h�i −
XT
i�1

hiΔt, �7�

in which h,i is the inner product in RT , and Δt is the size of
discretized time, and it is equal to one year in our calculations.
In addition, log�h� is a vector in RT for which kth element
is log�hk�.

The GLL, as defined in Heimisson et al. (2022) writes

GLL�yju;ΔS� � −
1
2
jy − h�u;ΔS�j2Γ: �8�

By j:jΓ we denote the weighted norm defined by
jvj2Γ � v⊺Γ−1v for a vector v ∈ RT , in which T is the number
of data points in y. Equation (8) assumes that the difference
between the observed and predicted number of events in each
year is normally distributed. When all the observations are inde-
pendent and identically distributed, Γ is a diagonal matrix. We
can borrow the concept from a Poisson process, for which the
variance equals the mean, to approximate the elements on the
main diagonal of Γ (variance) as the number of events in each
year. However, in that case because there are some years with
zero number of events, Γ would not be invertible. To overcome
this issue, Dempsey and Suckale (2023) set the variance at each
time bin equal to the number of observed events in that time bin
and put a threshold variance for when number of observations is
zero, trying to mimic a Poisson process. However, for a Poisson
process, the variance is equal to the true rate at each time bin
and not the observed rate. Here, we use Γ � κI, in which κ is the
average number of events in y, and I ∈ RT×T is the identity
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matrix. The additional assumptions about the variance of the
Gaussian likelihood both in our work and in Dempsey and
Suckale (2023) is one of its weak points compared to the
Poisson likelihood, which may cause inaccuracy in estimating
maximum likelihood and uncertainties.

Because of the small number of events at the onset of
induced seismicity, the Poisson and Gaussian likelihoods can
still yield different results, even though the Poisson likelihood
approaches the Gaussian likelihood as the number of events
becomes large. Alternatively, if aftershocks are present, the
Poisson likelihood may lead to biased results (Bourne et al.,
2018). Hence, we consider both likelihood functions and ana-
lyze the impact of aftershocks on their performance.

Uncertainty quantification and parameter
inference
There are several sources of uncertainty to consider when fore-
casting the future number of earthquakes using our modeling
framework. They include the uncertainties in stress distribu-
tion calculations (which come from uncertainties in extraction
(or injection) rates, pore pressures, and stress model), the
uncertainties in the seismicity model parameters, and the
uncertainty due to the stochastic nature of the seismicity. We
propose an algorithm to bound the range within which the
number of events in each time bin is expected at or above a
chosen confidence level, accounting for both epistemic and
aleatoric sources of uncertainty.

Different methods such as the Markov chain Monte Carlo
(Dempsey and Suckale, 2017; Smith et al., 2022) and genetic
algorithms (Dempsey and Suckale, 2023) exist to infer the
model parameters (u) from the data using different likelihood
functions (such as equations 8 or 7) and use them to forecast
future earthquakes. Bayesian methods further assume a prior
p�u�, which is then combined with the data y and the likeli-
hood p�yju� to generate a posterior distribution p�ujy�; their
UQ heavily relies on the choice of prior. To overcome this chal-
lenge, we use a “prior-free”methodology (Bajgiran et al., 2021)
for UQ, along with the BFGS method (Martins and Ning, 2021;
their algorithm 4.7) for optimizing the likelihood function. The
BFGS algorithm, which uses both first- and second-order
derivatives of the cost function, starts from uniformly selected
random initial points in the parameter space. One should be
careful with the optimization algorithm, as the Poisson- and
Gaussian-likelihood functions with the complicated seismicity
model and limited data available can potentially have multiple
local maxima.

Within this framework, we can separately account for dif-
ferent sources of uncertainty involved in predicting the future
events. First, there is uncertainty present in the model param-
eters (u), which exhibit changes in the expected rate of events
(epistemic). Second, there is uncertainty in the stochastic proc-
ess (aleatoric), which arises from the model of equation (1), in
which the rate of events is modeled, rather than the number of

events. Both of these uncertainties must be estimated and com-
bined to obtain a final UQ bound. To find the UQ bounds, we
first consider a likelihood function with unknown physical
parameters u ∈ Rq (in which q is four in this article), and
observations from y ∼ p�·ju� (y is distributed as p�·ju�), in
which p is either the temporal Gaussian or the Poisson like-
lihood in this article. Our method is not limited to these spe-
cific distributions. For example, p could also represent spatial–
temporal likelihoods in a broader sense. Our first step is to
determine a UQ region for the rate of future events at the
kth time, denoted by hk�u� ∈ R. We consider a region in
parameter space around the maximum-likelihood estimate
(MLE) for the observed data y, for some 0 ≤ α ≤ 1.

Θy�α� :�
�
u ∈ Rq :

p�yju�
sup
u′∈Rq

p�yju′� ≥ α

�
, �9�

in which sup
u′∈Rq p yju′� � � p yjuMLE

� �
with uMLE as the MLE of

the model parameters. The value of α is a function of the level
of epistemic uncertainty that we would like to consider. Based
on theorem 4.1 in Bajgiran et al. (2021), in the asymptotic
regime of a large sample of model parameters under regularity
conditions over the likelihood function (which are satisfied by
the Gaussian and Poisson likelihoods considered here), α
relates to the epistemic probability coverage (1 − ξ) with the
following equation:

α � exp

�
−
1
2
ψq�1 − ξ�

�
, �10�

in which ψq is the quantile function (inverse of the cumulative

distribution function) of a χ2q random variable [with degrees of

freedom (q) equal to the dimensionality of the parameter vec-
tor u]. The choice of α is made so that the selected interval has
the desired probability coverage 1 − ξ (on the rate of events).

After maximizing the likelihood function, we find set Θy�α�
by selecting all the model parameters u, which have the con-
dition of equation (9). Then, we obtain a confidence interval
for hk�u� as the next equation. The following equation only
gives the confidence bound on the rate of events at kth time
and not the number of events:

�
min

u′∈Θy�α�
hk�u′�, max

u′∈Θy�α�
hk�u′�

	
: �11�

We define h−k and h�k as the minimum and the maximum
rate of events, respectively, with probability (1 − ξ) at kth time
as the following:

h−k � min
u′∈Θy�α�

hk�u′�,

h�k � max
u′∈Θy�α�

hk�u′�: �12�
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So far, we showed how to put bounds on the rate of events
(hk) at kth time (equation 11); the true rate is in the obtained UQ
bound with probability 1 − ξ. However, a full UQ bound on the
number of events should also take into account the stochasticity
of the process. To that end, we add aleatoric bounds on top of
the epistemic bounds to the quantity of interest function hk.
Because hk is the rate of events at kth time, the number of events
at that time follows a Poisson distribution with its mean equal to
hk. To approximate the confidence limit (�ϕ−�u�,ϕ��u��) of a
Poisson process (number of events), at kth time bin, with a
Poisson mean of hk (rate of events), we use the next equation,
which has shown satisfactory performance for different ranges
of hk, especially when hk > 4 (Patil and Kulkarni, 2012):

φ−�u� �
1
2
ψ2hk

�γ=2�

φ��u� �
1
2
ψ2�hk�1��1 − γ=2�, �13�

in which ψ2hk
and ψ2�hk�1� are the quantile function of the χ2

distribution with 2hk and 2�hk � 1� degrees of freedom. When
hk is large (>30), one can approximate the confidence interval of
a Poisson process (equation 13) by the confidence interval of a
Gaussian process (Brown et al., 2001). When the rate of events
(hk) is smaller than 4, equation (13) is conservative, and one can
use other confidence limits introduced in (Patil and Kulkarni,
2012). Here, 1 − γ is the aleatoric coverage, probability for which
γ is defined by the practitioner.

Using elements in the set Θy�α�, the confidence interval of
the number of events, considering both aleatoric and epistemic
uncertainties with probability at least �1 − ξ��1 − γ� is given by:

Ik � � min
u′∈Θy�α�

φ−�u′�, max
u′∈Θy�α�

φ��u′��, �14�

in which Ik is the confidence interval at kth time bin. The
practitioner chooses two parameters ξ and γ that regulate
the epistemic and aleatoric uncertainty, respectively. If Θy�α�
contains the true parameter with probability 1 − ξ, and the
worst-case 1 − γ interval is created on top (equation 14), the
combined interval contains the true number of events with
a probability of at least �1 − ξ��1 − γ�. There is the possibility
of optimizing over ξ and γ such that we obtain the tightest
interval for the number of events for a fixed �1 − ξ��1 − γ�.

One practical point to be mentioned is that since the
quantile function of χ2 monotonically increases, we simplify
equation (14) as

Ik �
�
1
2
ψ2h−k

�
γ

2

�
,
1
2
ψ2�h�k �1�

�
1 −

γ

2

�	
, �15�

in which ψ2h−k
and ψ2�h�k �1� are the quantile function of χ2

distribution with 2h−k and 2�h�k � 1� degrees of freedom.
We use equation (15) as the final rule for the confidence

interval of the number of events at kth point in time, with
probability at least �1 − ξ��1 − γ� (see Appendix A6, available
in the supplemental material to this article, for mathematical
details). Based on Lemma 1 in Appendix A6, available in
the supplemental material to this article, the probability
that the number of events lies inside the confidence range
in equation (15) is at least �1 − ξ��1 − γ�. As we will see in
the simulations, the confidence interval given in equa-
tion (15) is a conservative interval, because we have
assumed the worst-case scenario for the model parameters
with (1 − ξ) probability coverage. We summarize the method
in Algorithm 1.

To help the reader better understand the algorithm and also
show why the confidence bound is conservative, we have
included some simple pedagogical examples in Appendix A5,
available in the supplemental material to this article. The codes
of Algorithm 1 applied to those examples are available online
(see Data and Resources).

Earthquake magnitude probability
Earlier, we have described how to forecast the number of earth-
quakes while taking uncertainties into account. To estimate the
probabilities of induced earthquake magnitudes, it is essential

ALGORITHM 1
UQ algorithm

1. Inputs:

(a) Likelihood model p�·ju�

(b) q � dim�u�

(c) Data y

(d) Significance levels ξ and γ, such that an interval of coverage probability
�1 − ξ��1 − γ� is obtained

2. Find uMLE � argmaxup�·ju� via an optimization algorithm

3. Set α � exp�− 1
2ψq�1 − ξ��

4. Find the set Θy�α� :� fu ∈ Rq : p�yju�
p�yjuMLE� ≥ αg,

5. For kth timestep, find h−k and h�k

h−k � min
u′∈Θy�α�

hk�u′�

h�k � max
u′∈Θy�α�

hk�u′�

6. The confidence bound on the number of events with probability
�1 − γ��1 − ξ� in kth timestep is given by:�

1
2
ψ2h−k

�
γ

2

�
,
1
2
ψ2�h�k �1�

�
1 −

γ

2

�	
:
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to use a model that describes their magnitude–frequency dis-
tribution. Earthquakes in any tectonic setting tend to follow the
Gutenberg–Richter (GR) magnitude–frequency distribution,
which has different variants. Some of these variants assume
truncation at the maximum magnitude beyond which earth-
quakes are considered physically impossible, whereas others
have a gradual tapering (mostly exponential). Such options
have been studied in the context of the Groningen gas field
(Bourne and Oates, 2020; Dempsey and Suckale, 2023). In this
study, we demonstrate our framework using both nontapered
and tapered distributions.

Nontapered GR. The number of events with a magnitude
greater or equal to m, N≥m in nontapered GR is given by

N≥m � N≥Mc
10�−b�m−Mc��, �16�

where Mc is the cut-off magnitude, b describes the relative pro-
portion of small-to-large earthquakes, and N≥Mc

is the total

number of events with a magnitude greater than or equal toMc.
Here, we consider b and N≥Mc

as random variables with some

probability distribution functions, which will be discussed
shortly.

There are many methods in the literature for finding the b-
value (Marzocchi and Sandri, 2003). We have used the “b-pos-
itive (b�)”method (van der Elst, 2021), because it is insensitive
to variations in the magnitude of completeness of the earth-
quake catalog. Their estimator is calculated only based on pos-
itive differences in magnitude between successive events
according to

b� � 1

�m̄′ −M′

c� ln�10�
m′ ≥ M′

c, �17�

in which m′ is the difference
between the magnitude of two
successive earthquakes. M′

c is
a constant number that satisfies
the M′

c ≥ 2δ condition, in
which 2δ is the discretization
level of the moments in the
catalog. To use equation (17),
one should use a moving win-
dow of events and find those
events for which m′ ≥ M′

c,
and then average all m′s in
the window to find m̄′. The
standard deviation of the esti-
mated b� can be approximated

by b�
















N�m′≥M′�

p , in which N�m′ ≥

M′� is the number of events
that satisfy m′ ≥ M′ condition
in the time window.

To find a realization of
N≥Mc

, we sample from a nonhomogeneous Poisson process
with rate h�u;ΔS�. h�u;ΔS� is the vector of seismicity rates
for a desired time span, in which u is sampled from the pos-
terior distribution of the model parameters. The flowchart of
Figure 2a summarizes how one can sample from the nonta-
pered GR distribution while considering both the epistemic
and the aleatoric sources of uncertainty.

Using equation (16), the most probable maximum magni-
tude (M̂max) that would be observed in a sample of size N ≥ Mc

(Van der Elst et al., 2016) is

M̂max � Mc �
1
b
log10�N≥Mc

�: �18�

It should be noted that due to the distribution’s heavy tail,
the expected maximum magnitude (mean of the PDF ofMmax)
is larger than the most probable maximum magnitude (mode
of the PDF of Mmax). Throughout this article, we use M̂max for
the most probable maximum magnitude for a nontapered GR
distribution.

It is straightforward to find the probability of exceeding any
magnitude over any chosen time duration as we describe sub-
sequently. In the limit of large N�M ≥ Mc�, the confidence
level q on the most probable maximum magnitude can be cal-
culated using the following equation:

M̂q � M̂max −
1
b
log10�− ln�q��: �19�

As a result, the probability of having an event with a mag-
nitude greater than M̂q is P�M̂max > M̂q� � 1 − q. We can
write this quantity as a function of M̂max and the b-value,

P�M̂max > M̂q� � 1 − exp�−10b�M̂max−M̂q��: �20�

(a)

(b)

Figure 2. Flowchart illustrating the steps involved in sampling from a Gutenberg–Richter (GR)
distribution considering both the aleatoric and the epistemic sources of uncertainty. First, we
sample from the posterior distribution of the model parameters u. Then, we sample from a
nonhomogeneous Poisson process with the rate h�u,ΔS� to generate a realization of N≥m. For the
nontapered GR (a), we use the number of events and a realization of the b-value to sample from
equation (16) and obtain the magnitudes of the events. For the tapered GR (b), we use the number
of events and the realizations of ζ and β. Then, the magnitude of each event is determined
randomly using equation (21). For both nontapered and tapered GR distributions, we repeat the
process multiple times. The color version of this figure is available only in the electronic edition.

8 Seismological Research Letters www.srl-online.org • Volume XX • Number XX • – 2023

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/doi/10.1785/0220230179/6112830/srl-2023179.1.pdf
by California Institute of Technology  user
on 14 February 2024



Tapered GR. Based on the tapered GR distribution, the prob-
ability of an event with a seismic moment greater than M is
given by the following equation (Kagan, 2002; Bourne and
Oates, 2020):

P�≥ MjM ≥ Mm� �
�
M

Mm

�
−β

e−ζ�
M
Mm

−1�, �21�

in whichMm is a constant that will be defined shortly, β and ζ
are parameters in this model that in principle can be a function
of stress or stressing rate. In this study, we consider β and ζ as
independent random variables, and we will sample from their
posterior distribution. The flowchart of Figure 2b summarizes
the sampling scheme from a tapered GR distribution while
considering both the epistemic and the aleatoric uncertainties.
To generate random realizations from equation (21), the
inverse transform sampling method is used (Steinbrecher
and Shaw, 2008). Posterior distributions of β and ζ are found
by maximizing the following log-likelihood function:

l �
XN
i�1

�
log

�
β� ζ

Mi

Mm

�
− �1� β� logMi

Mm
− ζ

�
Mi

Mm
− 1

��
,

�22�
in which N is the number of events. We can relate the seismic
moment (M) to the moment magnitude (M) using the follow-
ing equation:

log10 M � �c� dM�, �23�

in which c = 9.1 and d = 1.5. The valueMm can be found using
the following equation:

logMm �
�
c� d

�
Mc −

1
2
ΔM

��
log 10, �24�

in which Mc is the magnitude of completeness, and ΔM is the
size of binned intervals. Based on equation (21), the probability
of an event with seismic moment smaller than M is given by

P�< MjM ≥ Mm� � 1 − P�≥ MjM ≥ Mm�: �25�

As a result, assuming the magnitude of events is indepen-
dent and identically distributed according to equation (21), the
probability that N≥Mc

events having seismic moment smaller
than M can be found by the following equation:

P�<M,X�N≥Mc
jM≥Mm�� �1−P�≥MjM≥Mm��N≥Mc ,

�26�

in which X counts the occurrence of a specific outcome.
Therefore, the probability of having at least one event out of
N≥Mc

realizations with seismic moment greater than M is

given by

P�>M,X ≥ 1jM≥Mm�� 1− �1−P�≥MjM≥Mm��N≥Mc :
�27�

Results and Discussion
Uncertainty in the forecast of earthquake
numbers
We first comment on the results obtained when the earthquake
catalog is split into a training set and a test set (Fig. 3). The
training set includes data up to 2008 (shown in white), whereas
the test set includes data from 2009 to 2021 (shown in gray in
Fig. 3). The maximum Poisson-likelihood model parameters
(uMLE) are estimated using the training set. Once we estimate
uMLE, we run the forward model to obtain the maximum-like-
lihood estimate (MLE) for the seismicity rate (hMLE). The
observed seismicity follows quite closely the forecast, matching
well the peak of seismicity in 2012–2014 and the subsequent
decline (Fig. 3). It is noteworthy that the previous models
(Candela et al., 2019; Richter et al., 2020) trained on the
pre-2009 data were unable to capture the turnover in 2014.

We now seek to bound the ≥90% confidence level
(�1 − γ��1 − ξ� � 0:9) for the number of events in each year,
in which (1 − γ) and (1 − ξ) are the confidence level in the
Poisson process (aleatoric uncertainty) and the model param-
eters (epistemic uncertainty), respectively. As stated earlier, for
a given confidence level (�1 − γ��1 − ξ�), the values of (1 − γ)
and (1 − ξ) are not uniquely determined. The confidence
bounds slightly change when changing these two parameters
while keeping the multiplication constant. We have analyzed
the sensitivity of selecting ξ and γ on confidence interval
for specific confidence levels in Appendix A7, available in
the supplemental material to this article. The balance between
these two uncertainties helps to have the tightest interval of the
number of events for a given confidence probability. We found
that having 1 − γ close to 1 − ξ is a good first guess. In the case
of Figure 3, we selected the combination 1 − γ � 0:96
and 1 − ξ � 0:94.

The red lines in Figure 3 show the variability at the 94%
confidence level of the forecasted seismicity rate (h94%). The
≥90% confidence bound on the number of events (black lines
in Fig. 3) is obtained by adding the uncertainty due to the
Poisson process using equation (15).

Figure 4a compares the observed yearly rate (blue line) of
seismicity with the various confidence intervals obtained with
our method (red to green lines). We can use that graph to com-
pare the difference between the observed and the predicted
yearly number of events with the uncertainties in the model
prediction estimated from our method. The comparison shows
that, as expected, the misfits lie well within the estimated
bounds on the confidence interval (Fig. 4b). The uncertainties
are largely overestimated at lower confidence levels and less so
at higher confidence levels. For example, 71% of the catalog
data points are within the ≥25% confidence interval, and
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97% of the catalog data points are within the ≥90% confidence
interval.

One can understand the results in Figure 4b with the fol-
lowing two extreme cases. First, imagine that we have an infin-
ite number of observations in the training set. In this case, the

model parameters are very well constrained, and the uncer-
tainty of the forecast comes primarily from the Poisson proc-
ess. This is verified in Example 4 of the Appendix A5, available
in the supplemental material to this article, for which, in this
case, the points in a similar plot as Figure 4b now lie around
the y � x line. In the second case, imagine there are very few
observations in the training set. Now the uncertainty of
the forecast comes from both the lack of knowledge of the
model parameters and the aleatoric uncertainty of the
Poisson process. As a result, for the same confidence level,
the uncertainty range of the forecast is much larger and the
aleatoric variations that are observed in the data will remain
well within the bounds estimated from our method that con-
siders both the epistemic and aleatoric uncertainties. In other
words, the points will fall below the dashed line as seen in
Figure 4b.

Other simple examples are shown in Appendix A5, available
in the supplemental material to this article, which should help
the reader understand the concept.

Comparing likelihoods
In this part, we compare the performance of the nonlocal
Gaussian and Poisson likelihood. The effect of likelihood is
important in the context of induced seismicity forecasting,
because, at the beginning of the seismic activity, the number
of events is small (and the Gaussian and Poisson likelihood
can be far from equivalent) and clustering is hard to assess.
We also use our modeling framework to assess how better seis-
mic monitoring would have helped to predict more accurately
and earlier induced seismicity at Groningen.

Figure 3. Quantifying uncertainty and forecast up to the year
2021 using the Poisson likelihood: red lines show the seismicity
rate with 94% probability, the cyan line is the maximum-likeli-
hood estimate (MLE) of the rate of events, and black lines
show ≥90% confidence interval of the number of events with
1 − γ � 0:96 and 1 − ξ � 0:94. Seismicity data (with Mc � 1:5,
blue line) up to the year 2008 is used (white), and the rate is
predicted for the years 2009–2021 (gray). The color version of
this figure is available only in the electronic edition.

Figure 4. Confidence-bound performance: (a) the white region is
used as the training set and the gray region is used as the test set.
Dark blue is the seismicity data (withMc � 1:5), and hMLE in cyan
is the MLE of the rate of events. Different percent confidence
interval bounds for the number of events are plotted as well.
(b) The percentage of events (x axis) that lie inside a certain
confidence interval bound (y axis). The dashed line plots y = x line.
Assuming the data comes from a nonhomogenous Poisson

Process, and the practitioner’s only uncertainty is the Poisson
process (aleatoric) and not the model parameters (epistemic),
points should lie more or less around this line. In reality, we have
epistemic uncertainty, and the confidence bounds are larger than
the confidence bounds that only come from a Poisson process. In
this figure, for the sake of simplicity, ξ is considered to be equal to
γ. The color version of this figure is available only in the electronic
edition.
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Figure 5 presents a comparison between the MLE models
obtained with Poisson and Gaussian likelihoods. In this par-
ticular training-test scenario, the Poisson likelihood produces
a forecast that is more closely aligned with the observed data
during the test period. To assess more broadly the performance
of the two likelihoods, we performed systematic tests on data
sets with different sizes and different proportions of after-
shocks.

Based on Heimisson et al. (2022), the overall magnitude of
completeness in the KNMI catalog from 1991 to 2021 is almost
1.5. Therefore, we initially used a cut-off magnitudeMc � 1:5.
To augment the number of events, we also tested using a cut-
off magnitude Mc � 1:2. To augment further the catalog size
and include a known proportion of aftershocks, we also gen-
erated a synthetic catalog using the epidemic-type aftershock
sequence (ETAS) model. This catalog has almost 10 times
more events than the KNMI catalog and would correspond
to a magnitude of detection of about Mc ≃ 0:5. Therefore, it
mimics the catalog that would have been obtained if the seis-
mic network in operation since 2014 had been deployed much
earlier. The catalog that is generated based on the ETAS model
(denoted by yETASMc≈0:5

) contains 24% of aftershocks—a value con-
sistent with the estimated proportion of aftershocks (Post et al.,
2021). For further information on how the synthetic catalog
(yETASMc≈0:5

) was created and to view an example of the forecast

and UQ algorithm utilized in it, please refer to Appendix
A3, available in the supplemental material to this article. By
lowering the cut-off magnitude, we should end up with a larger
proportion of aftershocks. Therefore, we should expect the
Gaussian likelihood to perform better.

For each data set (y), we use a moving boundary between
the training set and the test set (Fig. 6a). The moving boundary
enables us to use training sets of different sizes. Because we
work on different catalogs that have different numbers of
events each year, we define a prediction error that is normal-
ized by the number of events as

ϵ �yotest,htest� �




























































1

N test

�
yotest − htest

yotest
,
yotest − htest

yotest

�s
, �28�

in which yotest and htest are the vectors of the observed seismicity
and the MLE of the predicted seismicity rate in the test set,
respectively. N test is the number of data points in the test

set. By �yo−hyo � we mean element-wise division, and h,i is the

inner product in RN test .
Figure 6 shows the performance of the likelihood functions

for different data sets and different sizes of training sets. At the
first glance, there is a reasonable trend of error reduction as the
last year that is used in the training set gets larger. For the data
sets with Mc � 1:5 and 1.2 (these are from the measured seis-
micity catalog), the Poisson likelihood generally has a smaller
error than the Gaussian likelihood. For the synthetic catalog
corresponding to Mc ≈ 0:5, the Gaussian likelihood yields a
better fit to the test set. The large size of the catalog and
the large proportion of aftershocks make the Gaussian likeli-
hood more appropriate in that case. In all three cases, the
Poisson likelihood has a more stable error that there are fewer
jumps in the error of its prediction.

It is important that in comparing the two likelihood func-
tions, the Gaussian likelihood has an additional disadvantage
compared to the Poisson likelihood: it has one more parameter,
which is its variance. We have assumed equal variance in each
observation (Γ � κI), with κ being the average number of
events per year. This is only a first-order approximation that
is used in this article for convenience and consistency with the
alternative Poisson process. Both our approximation of the
variance of the Gaussian likelihood and the one introduced
in (Dempsey and Suckale, 2023) can potentially add bias into
the MLE and the UQ.

Figure 6b can also be used to assess how better seismic mon-
itoring would have helped detect events earlier and predict
more accurately induced seismicity at Groningen. For this pur-
pose, we can compare the error in the forecast for the synthetic
catalog (yETASMc≈0:5

) with the error in the forecast of the measured
seismicity catalog (yoMc�1:5 or yoMc�1:2). As an example, the
accuracy of a forecast based on the training set up to 1999
for yETASMc≈0:5

data set is almost equal to the accuracy of a forecast

Figure 5. An example of a comparison of the MLE models
obtained with the Poisson and Gaussian likelihoods. The white
region is used for the training set, and the gray region is used for
testing. The blue line is the seismicity data with Mc � 1:5, and
the orange and the green lines are the MLEs for the rate of events
based on the Poisson and Gaussian likelihoods, respectively. In
this instance of training-test sets, the Poisson likelihood yields a
forecast in better agreement with the observations over the test
period than the Gaussian likelihood. The color version of this
figure is available only in the electronic edition.
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based on the information up to 2019 for yoMc�1:5. This result
suggests that if we had a seismic network with Mc � 0:5, we
could have reached the same level of accuracy 20 yr earlier.

We note that the errors are smaller when using the catalog
with Mc � 1:5 compared to the catalog with Mc � 1:2,
although there are more events in the latter. We interpret this
observation as an indication that having an accurate estimate
of the magnitude of completeness is important for the perfor-
mance of the forecast.

It should be noted that the inversions (for both likelihood
functions) show a strong trade-off between the background
seismicity rate (r) and the characteristic time (ta). For
more information about the inverted model parameters see
Appendix A8, available in the supplemental material to this
article.

Prospective forecast of earthquake numbers and
magnitudes
In this section, we show how our integrated framework and
UQ methodology can be used to quantify induced earthquake
magnitude probabilities for the Groningen gas field until the
year 2030. We use both nontapered and tapered GR distribu-
tions. To quantify magnitude probabilities for both distribu-
tions, we have followed the steps in Figure 2. To forecast
the seismicity after 2021 (the gray region in Fig. 7), we have
assumed the “cold winter” scenario for gas extraction
(Nederlandse Aardolie Maatschappij [NAM], 2013). Using
observations up to the year 2021, the posterior distribution
of model parameters (u) is found using PLL. Then, based
on the “cold winter” scenario, the time series of stress distri-
butionΔS is calculated. Using this information, we can find the
seismicity rate h�u,ΔS� for up to the year 2030 (Fig. 7).

The b-value might vary systematically in space, time, or with
the stress level (Scholz, 2015; Gulia and Wiemer, 2019; Bourne

and Oates, 2020; Muntendam-Bos and Grobbe, 2022). The time
evolution of the b-value is calculated using equation (17) and a
moving window of 400 events. Figure 8 does not show any mon-
otonic trend that would suggest a dependence on the stress level
or time. The b-value seems correlated with the seismicity rate,
but the physical and statistical significance of the correlation are
not obvious. For simplicity, we assume that the b-value is sta-
tionary. We construct a probability density function (PDF) from
the distribution obtained by considering successive time win-
dows (Fig. 8). By sampling from this PDF, we find realizations
of the b-value for our analysis.

For the tapered GR distribution, to find the posterior
distribution of β and ζ , the catalog up to 2021 is used with
uniform priors (0:3 ≤ β ≤ 1 and 0 ≤ ζ ≤ 1). The MLEs for β
and ζ are β � 0:62 and ζ � 1:3 × 10−3, respectively, with
Mm � 1:9 × 1011 N · m.

We use equations (20) and (18) for the nontapered and
equation (27) for the tapered distribution to determine the
probability of exceeding a certain magnitude (P�M̂max > M̂q�).
This probability depends on random parameters for both non-
tapered and tapered GR distributions, and realizations of those
parameters are required to accurately calculate it. These

Figure 6. Comparing the performance of Poisson log-likelihood
(PLL) and Gaussian log-likelihood (GLL) on different catalogs
using different combinations of training and testing sets. (a) The
pink region serves as the training set, whereas the gray region is
the test set, and different boundaries between the two are
examined (b) normalized error as a function of the last year that is
used in the training set. The green and orange markers corre-
spond to GLL and PLL, respectively, whereas the plus marker
represents yoMc�1:5, the diamond stands for yoMc�1:2, and the star
stands for the catalog based on the epidemic-type aftershock
sequence (ETAS) model withMc ≈ 0:5 (yETASMc≈0:5

). The color version
of this figure is available only in the electronic edition.
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random variables include the model parameter (u), the num-
ber of events that is a random realization of a nonhomogenous
Poisson process with the rate h�u,ΔS�, and the b-value for
nontapered GR distribution, as well as β and ζ for tapered
distribution. By generating multiple realizations from all
of these random variables, we find an empirical average for
P�M̂max > M̂q� for different M̂q. P�M̂max > M̂q� is an

increasing function of the total number of events, and
P�M̂max > M̂q� also increases because the total number of
events increases over time. Figure 9 illustrates the empirical
average evolution of P�M̂max > M̂q� over time. Because the
event rate has been decreasing after 2012, the slope of
E�P�M̂max > M̂q�� has also been declining for the 2012–2030
interval. The choice of a frequency–magnitude distribution
type, whether tapered or nontapered, has a significant impact
on the probability of surpassing a certain magnitude. As a case
in point, according to Figure 9, the probability of having an

Figure 7. The forecast of the number (or rate) of events for years
2022–2030, the white region is used as the training set to
forecast the seismicity in the gray region. The blue line is the
seismicity data (yoMc�1:5), cyan is the predicted rate of events
based on Poisson likelihood, and red lines are the predicted rate
of events with a 94% confidence on the model parameters
(epistemic). Black lines are the confidence interval of the number
of events (epistemic + aleatoric) with probability at least 0.9, and
are generated using Algorithm 1 with 1 − ξ � 0:94 and
1 − γ � 0:96. The color version of this figure is available only in
the electronic edition.

Figure 9. Evolution of the empirical average of the probability of
the most probable maximum magnitude (M̂max) being higher
than specific magnitudes (M̂q) for different values of M̂q. The
solid lines are for the nontapered GR distribution, and the dashed
lines are for the tapered GR distributions. The color version of this
figure is available only in the electronic edition.

Figure 8. (a) Time series of the b� and its 68% confidence interval
and (b) probability distribution function (PDF) of b�. The color

version of this figure is available only in the electronic edition.
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event with magnitude greater than 4.2 until the year 2030 is
∼0.6 based on the nontapered model, but it is almost zero with
the tapered model. Determining which distribution is more
suitable for the Groningen gas field (Bourne and Oates,
2020; Varty et al., 2021; Muntendam-Bos and Grobbe, 2022;
Dempsey and Suckale, 2023) is beyond the scope of this article.
Our estimate of the probability of exceeding a certain magni-
tude is close but slightly larger than the probabilities estimated
in Dempsey and Suckale (2023). For instance, according to
their analysis using a tapered distribution, the likelihood of
an event (up to the year 2030) with a magnitude exceeding
3.6 is about 0.1. In our analysis, this probability is closer to
0.3. The difference between the two estimates could stem from
the omission in Dempsey and Suckale (2023) of the epistemic
uncertainty of the earthquake rate model, as well as the uncer-
tainty related to parameters of the magnitude–frequency dis-
tribution. Another contributing factor might be the utilization
of different physical models in these investigations.

Realizations of the nontapered and tapered GR distributions
are obtained using the workflow described in Figure 2. The non-
tapered and tapered GR distributions are displayed in Figure 10
(a and c, respectively). In Figure 10b and 10d, we have plotted the
PDF of the Mmax (up to 2030) in which we have denoted the
most probable maximum magnitude (M̂max), and its 97th and
3rd percentiles as well as the observed maximum magnitude
up to 2021. The [3rd, 97th] range of Mmax for nontapered dis-
tribution up to 2030 is [3.5,5.8] and is [3.3,4] for tapered distri-
bution. The maximum observed magnitude in the field (up to
2021) lies close to the 3rd percentile for the nontapered GR dis-
tribution (up to 2030), whereas it is close to the most probable
maximum magnitude (up to 2030) for the tapered distribution.

To quantify earthquake magnitude probabilities, we have
assumed that the distribution of the b-value in nontapered
and β and ζ in tapered GR distributions are stationary in time
and uniform in space. This assumption might not be valid,
especially for the times and locations that have large fluctua-
tions in fluid extraction. In addition, we have not assigned any
uncertainties to the stress model. The validation test shows that
the uncertainty bounds are consistent with the observation.
However, this might not be necessarily correct in the prospec-
tive scenario. The reservoir model ignores the response of the
local aquifers to the pressure depletion (Meyer et al., 2022). As
a result, the model tends to overestimate the pressure depletion
toward the end of the simulation. If this trend continues in the
future, it means that our model might be overestimating com-
paction and the Coulomb stress changes going into the future
scenario. Another caveat is that we have assumed a purely
poroelastic response of the medium. The assumption is prob-
ably a correct approximation over the historical period,
because the model fits well with the observed subsidence
(Smith et al., 2019). However, there is no guarantee that it will
hold true in the future given the possibility of rate-dependent
rheology of the reservoir itself and possible viscous flow of the

salt layers outside the reservoir (Pruiksma et al., 2015). This
might be another cause for our model to overestimate
Coulomb stress changes going into the future.

One limitation of our study is that we have not considered
the uncertainties associated with the reservoir and the geome-
chanical models. In that regard, we present in Appendix A2,
available in the supplemental material to this article, the results
obtained with seven other different stress models. Despite the
fact that they predict different spatial distributions of seismic-
ity, they all yield very similar temporal forecasts and uncertain-
ties. Therefore, although we have not tested the full range of
possible stress models that could be consistent with data (well-
head pressure, flow rates, and subsidence), this observation
supports the claim that it would probably not impact the earth-
quake forecast much. However, it is important that the best-
fitting model parameters differ substantially between the dif-
ferent models, most notably Aσ0 and ΔSc (see Appendix A2,
available in the supplemental material to this article). This
is because these parameters scale with the magnitude of
the stress changes used in the seismicity model. The values
of these parameters derived from one particular choice of
the stress model should, therefore, be considered with caution.
Although the true value of these parameters remains highly
uncertain because of the uncertainty of the stress input, the
forecast is not very sensitive to possible bias introduced by
the choice of the stress model, because it is compensated by
a bias in the estimate of the model parameters.

One should finally note that, by choosing one particular
stress model considered as true, one takes in effect into account
the entire dataset that was used to derive the stress model,
including data beyond the various training periods considered
in this study. The reservoir model employed to compute stress
is calibrated using data up to May 2017 (Meyer et al., 2022) and
the geomechanical was calibrated using subsidence data from
the onset of production until 2019 (Smith et al., 2019). A more
rigorous test of the forecasting method should have in princi-
ple used a stress model derived from only the data over the
training period. This is a minor limitation in the case of this
study, given the small sensitivity of the temporal forecast to
different stress calculations.

Conclusion
This study describes a method to quantify the epistemic and
aleatoric sources of uncertainties in induced earthquake fore-
casting. The proposed algorithm (Algorithm 1) provides
bounds on the confidence intervals. We demonstrated and
tested the performance of the approach in the particular case
example of induced seismicity at the Groningen gas field where
abundant information is available. In principle, the reservoir
model, the geomechanical model, and the earthquake nuclea-
tion model are all sources of epistemic uncertainties. The
method is general enough that it could include all these sources
of uncertainties, albeit at a computational cost. To reduce the
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Figure 10. Forecast of the earthquake numbers and magnitudes
using the flowchart of Figure 2. Panels (a) and (c) show the
nontapered and tapered GR distributions, respectively. For the
nontapered GR samples, 20 realizations of the model parameter
(u), 20 realizations for the number of events (for each model
parameter), 50 realizations of b-value, and, finally, 10 realizations
of equation (16) are used to generate total 2 × 105 black lines in
panel (a). For the tapered GR distribution, five realizations of
model parameters u, five realizations for the numbers of events,
20 realizations of β, 20 realizations of ζ, and finally 10 realizations
from equation (21) are generated for a total of 105 realizations.

The blue lines in panels (a) and (c) show the expected number of
earthquakes above a certain magnitude by 2030 with their 3rd
and 97th percentiles in green, whereas the red lines display the
recorded number of such events until 2021. Panels (b) and (d)
depict the PDF of the maximum magnitude for the nontapered
and the tapered distributions. The blue lines represent the most
probable maximum magnitude (M̂max), and the green lines
indicate the 97th and 3rd percentiles. The red lines denote the
maximum magnitude recorded until 2021. The color version of
this figure is available only in the electronic edition.
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computational costs, we assumed the stress model to be true
and sampled the stress changes in 2D at only the reference
level. We thus ignore the uncertainties due to the reservoir
and the geomechanical models. We argued that the choice
of the stress model mostly impacts the prediction of the spatial
distribution of seismicity, and that the temporal evolution
depends mostly on the earthquake nucleation model. We veri-
fied this claim by considering different stress models as input
of the workflow. We find that the method provides confidence
intervals on the number of forecasted earthquakes consistent
with the observations for all the different stress models tested.
This is because the possible bias introduced in the modeling of
the stress changes is compensated via the calibration of the
seismicity model (see Appendix A2, available in the supple-
mental material to this article).

We compare the performance of the Gaussian and the
Poisson nonlocal likelihoods for different data sets. We find that
the Poisson likelihood is more accurate than the Gaussian like-
lihood for small datasets with a small proportion of aftershocks
(say less than 1000 events over 30 yr and <20% aftershocks). The
Gaussian likelihood yields a slightly higher accuracy for a larger
dataset and a higher proportion of aftershocks, because the
events are not independent anymore, as assumed if a Poisson
likelihood is used. However, we find that, in all the cases con-
sidered in the study, the Poisson likelihood yields more stable
results with smaller fluctuations in the misfit of the forecast.

We use our framework to quantify how the deployment of
a more sensitive network early during the field operations
would have improved earthquake forecasting. Our simulation
shows that with a magnitude of completeness of Mc ≃ 0:5,
there would have been enough data by 2000 to calibrate the
model and reach a forecasting accuracy comparable to the
accuracy attained in 2020 with the real seismicity catalog.

We also show how the proposed UQ method can be used to
forecast earthquake magnitude probabilities. To that effect, we
examined nontapered and tapered Gutenberg–Richter fre-
quency–magnitude distribution until 2030, assuming the “cold
winter” scenario for gas extraction (NAM, 2013). We note that
our stress model for the future could be biased due to the lim-
itations of our reservoir model (no interactions with adjacent
aquifers) and the assumption of purely poroelastic deforma-
tion. Nevertheless, although our forecast of maximum magni-
tudes is close to the previous works, as pointed out correctly in
Dempsey and Suckale (2023), the most important source of
uncertainty for magnitude prediction is which magnitude–fre-
quency distribution is more suitable for the Groningen, as pre-
dictions based on those two methods are significantly different.

Data and Resources
We have used the seismicity catalog from the Royal Dutch
Meteorological Survey (KNMI; www.knmi.nl, last accessed May
2022). We have used previously published resources to find the stress
distribution (Smith et al., 2019, 2022; Meyer et al., 2022). To forecast

for up to 2030, we have used the “cold winter” scenario suggested in
NAM (2013). Our codes for Algorithm 1 for some simple examples
introduced in Appendix A5, available in the supplemental material to
this article, are available on GitHub (https://github.com/hojjatks/UQ-
Seismicity-Forecasting, last accessed September 2023). The supplemental
material for this article includes a brief formulation of the spatial stress
calculation (Appendix A1, available in the supplemental material to this
article), analysis of sensitivity of uncertainties to different stress calcula-
tions (Appendix A2, available in the supplemental material to this
article), a description of the observed and the synthetic catalog
(Appendix A3, available in the supplemental material to this article), dis-
cretization of equation (1) (Appendix A4, available in the supplemental
material to this article), some illustrative examples of our uncertainty
quantification (UQ) methodology and impact of the data on the UQ
bounds (Appendix A5), Lemma 1 for finding confidence interval bound
(Appendix A6), the sensitivity of the total confidence interval to different
combinations of epistemic and aleatoric uncertainty levels (Appendix
A7), and the likelihood of the model parameters (Appendix A8).
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